Water Budget University Station University Avenue Westwood, Massachusetts

Submitted to: Westwood Marketplace Holdings LLC

April 5, 2013 Revised April 18, 2013

Table of Contents

1.0	Introdu	Introduction					
	1.1	Project Background 1					
2.0	Data So	Data Sources					
	2.1	Rainfall Data					
	2.2	Temperature Data					
	2.3	Existing Water Consumption					
	2.4	Proposed Water Consumption					
	2.5	Water Conservation					
3.0	Water Budget Components						
	3.1	Evapotranspiration					
	3.2	Evaporation					
	3.3	Recharge from Pervious Surfaces					
	3.4	Recharge from Subsurface Infiltration7					
	3.5	Surface Runoff					
	3.6	Irrigation9					
	3.7	Evaporative Cooling					
4.0	Water Budget						
	4.1	Pre-Demolition Water Budget					
	4.2	Post Construction Water Budget					
5.0	Nitrogen Loading						
6.0	Summary						

List of Tables

Table 1 – Infiltration Basins Tributary Areas	7
Table 2 – Water Budget Surplus: Pre vs. Post Condition Comparison	10

List of Figures

- Figure 1 Regional Context Map
- Figure 2 Infiltration Basin Watersheds
- Figure 3 Pre-Demolition Water Budget
- Figure 4 Post Construction Water Budget

List of Appendices

- Appendix A Title V Wastewater Flow Estimate
- Appendix B US EPA WaterSense Documentation
- Appendix C Norwood Rainfall and Temperature Data
- Appendix D 2.02-Inch Recharge Calculation
- Appendix E Nitrogen Loading Calculation

1.0 Introduction

This report summarizes the water budget analysis that has been prepared for the University Station project (the project). The intent of this report is to describe the proposed project, indicate the sources of data used in the water budget and layout the framework of the water budget calculation. In addition to the water budget, a nitrogen loading calculation has been provided based upon the annualized stormwater recharge volumes. This report will show that the University Station project will have a positive impact on the local aquifer and the Neponset River base flow, while not resulting in any significant increases in total nitrogen concentrations within the groundwater aquifer.

1.1 Project Background

The project is a mixed use development located approximately 12 miles southwest of Boston in the Town of Westwood (Figure 1-1) and involves the redevelopment of a significant portion of the University Avenue Business Park. University Station will replace approximately 1.4 million square feet of the former industrial, warehouse, and office uses with a blend of modern residential, retail, restaurant, hotel, office, and public spaces.

Portions of the former industrial park, associated parking/loading areas, and access driveways have been previously demolished. This analysis utilizes the pre-demolition state of the site as the existing condition in the water budget analysis, as the site work that had been previously conducted is only an interim step in the overall development of the project.

The site is adjacent to the existing University Avenue/Route 128 MBTA Station, and its 2,700 vehicle parking facility. This facility provides a direct transit link to Back Bay and South Station in Downtown Boston. The other land uses adjacent to the project include residential neighborhoods to the west (Town of Westwood), Route 128/95 to the north (Town of Dedham), commercial/industrial uses to the south (Town of Norwood), and the MBTA/Amtrak rail corridor and Neponset River along the eastern boundary (Town of Canton). For further detail, please see Figure 1 – Regional Context Map.

The project site is $130\pm$ acres in size. A stormwater management system has been designed that will direct significant portions of the impervious surfaces (building roofs, parking areas and sidewalks) associated with the project site to subsurface infiltration systems that will provide groundwater recharge to the local aquifer. The significant volume of groundwater recharge that will be achieved with the proposed design will provide for a net positive benefit to the local aquifer.

The water budget has been developed considering water consumption, average annual rainfall, infiltration from pervious surfaces (grass and other open spaces), building roofs and parking areas directed to subsurface recharge systems, surface runoff, evapotranspiration and evaporation. Water budgets developed for both the existing and proposed conditions result in balanced water budgets. That is all the volume associated with the annual rainfall is accounted for by way of the parameters identified above.

Further sections provide discussions on the sources of data that were used in developing the water balance, water conserving practices and the net positive benefit to the local aquifer.

University Station Westwood, Massachusetts

2.0 Data Sources

2.1 Rainfall Data

Daily rainfall data was collected from the Norwood Airport (KOWD Weather Underground) from 2000 to 2009. The rainfall data was compiled and monthly and yearly rainfall averages were determined. Based on the Norwood Airport data, average annual rainfall data was determined to be 44.63 inches. The Norwood Airport rain data was chosen due to the close proximity to the project site. The airport is located just 1.6 miles south of the project and at a similar elevation.

The average annual rainfall data from the Westwood Airport was compared with the long term average recorded at the Great Blue Hill Observatory and to the data used in the previous Westwood Station water budget. The Great Blue Hill Observatory indicates the long term average rainfall for the region is 48.75 inches per year. Using the Norwood data, which predicts approximately 4 inches less rainfall per year, will produce a conservative result that is indicative of recent rainfall trends.

The Norwood Airport annual rainfall data was also compared with the rainfall data utilized in the Westwood Station water budget. The previous data indicated that the average annual rainfall was 44.87 inches. The Norwood Airport data is essentially consistent with the rainfall data used in the previous analysis.

2.2 Temperature Data

Temperature data was obtained from the Norwood Airport for the same 2000 to 2009 time period. The average monthly rainfall data is included in Appendix C. The temperature data is used in estimating monthly evapotranspiration rates and will be applied to both pre-construction and post construction water budgets.

2.3 Existing Water Consumption

Existing water consumption data was gathered from the previously approved Westwood Station water budget. The previous water budget had estimated domestic water consumption at 80,000 gallons per day. This estimate included the 200,000 square foot +/- office building located at 105 Rosemont Road. This building is not part of the University Station project. To account for the reduced water consumption under existing conditions, water consumption was reduced by 15,424 gallons per day (based on Title V flow rates for office uses). This reduction is likely conservative since Title V rates reflect peak demands rather average flow rates. Also, it is assumed that no make-up water is used at 105 Rosemont for evaporative cooling. Therefore, the existing water consumption was estimated to be 64,576 gallons per day.

2.4 Proposed Water Consumption

Proposed water consumption was estimated by using Title V wastewater flow rates and applying the rates to the various uses associated with University Station. A detailed

breakdown of the proposed uses along with the associated Title V wastewater flow rates is included in Appendix A.

Similar to the proposed water consumption calculations that were prepared as part of the Westwood Station project, Title V flows have been reduced by 50% to estimate average daily water flows. Title V flows are a useful tool in determined peak rates, which is a necessity in sizing of septic systems, however they over estimate average daily rates.

2.5 Water Conservation

The Neponset River Watershed Association has requested that the project consider using WaterSense water fixtures for showers, faucets, toilets and urinals. The project proponent has committed to utilizing the WaterSense fixtures. In general, any fixture with the WaterSense label will provide 20% efficiency when compared to standard fixtures according to documentation provided by the US EPA. Please see Appendix B for a copy of the US EPA documentation on WaterSense fixtures.

3.0 Water Budget Components

Water budgets have been developed for both the existing condition (pre-demolition) and post construction of the master plan University Station project. The water budgets have been developed utilizing the principal of conservation of mass. That is, all water that falls on the project site must be accounted for, whether it is in the form of surface runoff, infiltration, evapotranspiration or evaporation. This principal is applied to both the existing and proposed water budget calculations. A positive water budget is achieved when water consumption is exceeded by aquifer recharge. In the sections that follow, a discussion of key assumptions and calculation methods has been provided.

3.1 Evapotranspiration

Evapotranspiration is generally defined as the transfer of moisture from the earth to the atmosphere by evaporation of water and transpiration from plants. Evapotranspiration can be estimated by employing methodologies such as the Thornthwaite method. The Thornthwaite estimates evapotranspiration based on factors including temperature and hours of daylight. Evapotranspiration rates can also be affected by soil moisture content. For the purposes of this evaluation, evapotranspiration rates were not adjusted down due to soil moisture. Soil testing conducted to date indicates that the groundwater table is well below the ground surface and it is unlikely that plant roots extend into the water table. Instead, plants rely on soil moisture produced from infiltration and any adjustments would under estimate actual evapotranspiration.

In the water budget calculations, potential evapotranspiration rates have been estimated at 25.56 inches per year. This value has been deducted from the annual average rainfall in order to determine a value for potential recharge.

3.2 Evaporation

Evaporation is generally defined as water transforming from a liquid to a gas or vapor. For the most part, evaporation of water occurs from large bodies of water such as rivers, lakes and oceans. Evaporation from these sources accounts for approximately 90% of all moisture in the atmosphere. The remaining 10% of moisture comes from transpiration. Evaporation rates from building roofs and parking areas should generally be minimal, since both surfaces are designed to drain water efficiently and without depression storage (surfaces are designed and constructed with positive pitch to drain inlets). Typically, rainfall that hits building roofs or paved surfaces will be conveyed into infiltration systems within 5 minutes of falling. However, in order to provide a conservative estimate, it has been assumed that 30% of all rain that falls on impervious surfaces (both building roof areas and paved areas) will evaporate into the atmosphere. This assumption has been applied to both existing and proposed water budget calculations.

3.3 Recharge from Pervious Surfaces

For the purposes of the water budget calculation, it has been assumed that 90% of all rain that falls on pervious surfaces will be infiltrated. Pervious surfaces include lawns, meadows and other open space area. The remaining 10% would run off during larger and

less frequent rain events or enter the atmosphere by transpiration. This assumption is consistent with the prior Westwood Station water budget analysis.

3.4 Recharge from Subsurface Infiltration

The proposed University Station project has been designed to provide extensive recharge. As shown on the March 22, 2013 plan submission, 69% of all impervious surfaces will be directed to 6 subsurface recharge systems. Below is a summary of areas tributary to subsurface infiltration system

Basin ID	Overall Tributary Area (acres)	Roof Area (acres)	Paved Area (acres)	Pervious Areas (acres)
IFB 10P	25.1	2.25	20.4	2.4
IFB 11P	15.25	15.25	0	0
IFB 27P	7.0	1.3	5.3	0.4
IFB 47.4P	0.2	0.2	0	0
IFB 59.1P	7.5	2.9	3.7	0.9
IFB 59.2P	3.75	0.25	2.9	0.6
IFB 60P	9.4	1.8	4.55	3.05

 Table 1 – Infiltration Basins Tributary Areas

For additional information regarding the location of the infiltration systems and the areas tributary to each system, please see Figure 2 – Infiltration Basin Watersheds.

In calculating the volume of rainfall that would reach the infiltration system, contributions from the building roof areas and the paved areas were each considered separately. For the building roof areas, it was assumed that 97% of the rain that fell on the roof would be captured. This approach is consistent with the Westwood Station analysis. However, it was further assumed that 30% of the rain that lands on the building roof areas would evaporate.

The subsurface recharge systems have been designed to store and infiltrate the first 2inches of rainfall without a discharge. An analysis of the Norwood Airport rainfall data indicates that 98.4% of all rainfall events are less than 2-inches. From this same analysis, it was found that 87.2% of the total rainfall volume was also a result of storms that were less than 2-inches. Based on this analysis, it has been assumed that 85% of the rainfall that lands on impervious surfaces and is tributary to a subsurface recharge system will be infiltrated. Please see Appendix C for a copy of the Norwood Airport rainfall analysis.

As noted above, the subsurface recharge systems have been designed to store and infiltrate the first 2-inches of rain. The groundwater recharge calculations that were prepared in support of the March 22, 2013 Stormwater Management Report demonstrates this point. A copy of the recharge calculations are attached in Appendix D. Please note that the calculations are based on a 2.02-inch rainfall and that for each and every basin, there is zero outflow through primary outlets. Instead, all outflow is shown as being discarded. With HydroCAD, discarded flow represents infiltration.

3.5 Surface Runoff

Rainfall that lands on impervious walks, parking areas and roadways and is collected by drainage systems that are not connected to subsurface recharge systems has been accounted for as surface runoff. Although the stormwater is not directed to recharge systems, it is directed to water quality units and/or stormwater treatment basins.

3.6 Irrigation

The planting plan developed for University Station includes a plant list comprised of hardy, drought tolerant native species. Therefore, irrigation needs for the project will be minimal. In fact, most areas will not be irrigated, such as the large Gateway Park and the Meadow Park behind the Dedham-Westwood Water District building. Irrigation will be focused on key areas, such as the residential building and entrance drives to the Core Retail Area. In order to estimate potential irrigation needs it's been assumed that 10% of the pervious areas within University Station would be irrigated. Irrigated areas are assumed to receive one inch of water per week. Further it was assumed that irrigation systems would be in use from the middle of May until the middle of September.

3.7 Evaporative Cooling

Similar to the Westwood Station project, only office buildings have been assumed to use evaporative cooling. As part of the Westwood Station project, evaporative cooling estimates were generated for 1,500,000 square feet of office space. The University Station Office space has been reduced to 325,000 sf or just 22% of the previous project. Therefore the previous evaporative cooling estimates have been reduced to 22% of the Westwood Station estimate. Please note that evaporative cooling estimates have only been applied to the proposed University Station office buildings.

4.0 Water Budget

4.1 **Pre-Demolition Water Budget**

As requested by the Neponset River Watershed Association and the Dedham-Westwood Water District, the pre-demolition water budget has been recalculated. The land area and water consumption associated with the office building at 105 Rosemont Road has been deleted from the water budget. Norwood Airport rainfall data and evapotranspiration rates were applied for consistency with the post construction water budget. Further, it was assumed that there was no irrigation or evaporative cooling in developing the predemolition water budget.

Based on the revised calculations, the pre-demolition water budget for the land associated with University Station yielded a net positive water budget. The water budget calculations indicates that prior to demolition, the local aquifer would realize a surplus of 10.55 million gallons per year. The surplus supports the groundwater base flow of the Neponset River. Please refer to Figure 3 - Pre-Demolition Water Budget for detailed calculations.

4.2 Post Construction Water Budget

A post construction water budget has been developed utilizing the same data as the predemolition water budget. Infiltration and water consumption estimates (domestic water use, WaterSense fixtures, irrigation and evaporative cooling) as discussed in prior sections in the report were applied to the water budget. The resulting water budget calculation for the post construction condition also yields a positive water budget. The calculation indicates that the local aquifer would realize a surplus of 26.06 million gallons per year. The calculated surplus exceeds the pre-demolition condition by 15.51 million gallons per year, see Table 2 below. The increased surplus will further enhance the base flow to the Neponset River. Please refer to Figure 4 – Post Construction Water Budget for detailed calculations.

	Calculated Water Budget
Pre-Demolition Condition	10.55 MG
Post Construction Condition	26.06 MG
Net Gain in Surplus	15.51 MG

Table 2 – Water	Budaet	Surplus: Pre v	s. Post	Condition	Comparison
	Duuget		5.1 050	oonantion	oompanson

Figure 3 University Station Annual Stormwater Budget Pre-Demolition

Annual Water Budget Summary

				A	В		С	D	G
Month	Runoff from Impervious Area (MG)	EVAPORATION (MG)	EVAPOTRANSPIRATION (MG)	Stormwater Infiltration (from Pervious Areas) (MG)	Parking Area Runoff Directed to Infiltration Systems ² (MG)	Proposed Monthly Consumption Reduced for Average Demands ¹ (MG)	Proposed Monthly Consumption Demands with Evaporative Cooling	Potential Loss to Irrigation (MG)	Final Aquifer Recharge ² A+B+C (MG)
Jan	3.90	(2.15)	0.00	4.30	0.00	(2.00)	(2.00)	0.00	2.29
Feb	3.54	(1.95)	0.00	3.90	0.00	(1.81)	(1.81)	0.00	2.09
Mar	5.36	(2.90)	0.56	5.40	0.00	(2.00)	(2.00)	0.00	3.40
Apr	5.72	(2.89)	2.63	3.94	0.00	(1.94)	(1.94)	0.00	2.00
May	5.48	(2.52)	5.02	1.53	0.00	(2.00)	(2.00)	0.00	-0.48
Jun	5.54	(1.66)	7.50	0.00	0.00	(1.94)	(1.94)	0.00	-1.94
Jul	4.93	0.60	8.76	0.00	0.00	(2.00)	(2.00)	0.00	-2.00
Aug	3.74	1.80	7.98	0.00	0.00	(2.00)	(2.00)	0.00	-2.00
Sep	4.77	(2.11)	5.24	0.54	0.00	(1.94)	(1.94)	0.00	-1.40
Oct	5.67	(2.85)	2.78	3.75	0.00	(2.00)	(2.00)	0.00	1.74
Nov	5.10	(2.69)	1.17	4.57	0.00	(1.94)	(1.94)	0.00	2.63
Dec	5.63	(3.10)	0.00	6.20	0.00	(2.00)	(2.00)	0.00	4.20
Annual	59.38	(22.40)	41.64	34.12	0.00	(23.57)	(23.57)	0.00	10.55

In the approved prior FEIR the origininal water budget noted that Title V estimates represent a maximum daily demand. For average daily demands, Title V estimates were reduced by 50%. After the correction for average daily flows, a further reduction of 15% was assumed for water conserving fixtures, which will be used in the University Station project as required by the MA Plumbing Code.

²This analysis indicates that volume of stormwater available to recharge the aquifer and improve groundwater baseflow to the Neponset River. This analysis accounts for all potable and irrigation demands associated with the University Station project.

C+D	

Figure 3 University Station Annual Stormwater Budget Pre-Demolition

UNIVERSITY STATION RAINFALL BUDGET - PRE DEMOLITION

	University Station
Impervious Area (ac)	70
Roof Area Recharged (ac)	C
Pervious Area (ac)	60
Total (ac)	130

Month	Rainfall (in)	Potential Evapotranspiration (in)	Potential Infiltration (in)	Total Water Budget for Site (MG)
Jan	2.93	0	2.93	10.34
Feb	2.66	0	2.66	9.39
Mar	4.03	0.35	3.69	14.23
Apr	4.30	1.61	2.69	15.17
May	4.12	3.08	1.04	14.54
Jun	4.16	4.60	0.00	14.69
Jul	3.71	5.38	0.00	13.09
Aug	2.81	4.90	0.00	9.92
Sep	3.59	3.22	0.37	12.66
Oct	4.26	1.71	2.56	15.05
Nov	3.83	0.72	3.12	13.53
Dec	4.23	0	4.23	14.93
	44.63	25.56	23.27	157.55

POTENTIAL RECHARGE

Month	Infiltration from Pervious Area (MG)	Recharge from Roofs (MG)	Potential Loss to Irrigation ¹ (MG)	Parking Area Runoff Directed to Infiltration Systems ² (MG)	Total Infiltration (Recharge) ² (MG)
Jan	4.30	0.00	0.00	0.00	4.30
Feb	3.90	0.00	0.00	0.00	3.90
Mar	5.40	0.00	0.00	0.00	5.40
Apr	3.94	0.00	0.00	0.00	3.94
May	1.53	0.00	0.00	0.00	1.53
Jun	0.00	0.00	0.00	0.00	0.00
Jul	0.00	0.00	0.00	0.00	0.00
Aug	0.00	0.00	0.00	0.00	0.00
Sep	0.54	0.00	0.00	0.00	0.54
Oct	3.75	0.00	0.00	0.00	3.75
Nov	4.57	0.00	0.00	0.00	4.57
Dec	6.20	0.00	0.00	0.00	6.20
	34.12	0.00	0.00	0.00	34.12

¹Assumes the previous industrial park did not provide for infiltration

²The industrial park did not provide systems for groundwater recharge. All parking areas and builidngs were hard piped to drainage systems that discharged to the wetlands adjacent to the Neposet River.

POTENTIAL RUNOFF

Month	Runoff from Impervious Area ¹ (MG)
Jan	3.90
Feb	3.54
Mar	5.36
Apr	5.72
May	5.48
Jun	5.54
Jul	4.93
Aug	3.74
Sep	4.77
Oct	5.67
Nov	5.10
Dec	5.63
	59.38

1.Accounts for impervious areas, including building roofs.

EVAPOTRANSPIRATION CALCULATION (BASED ON BLUE HILL TEMP DATA)

Month	Temp (d F)	Temp (d C)	i	ET (cm) (unadjusted)	Daylight Factor	ET (cm) (adjusted)	ET (in)
Jan	26.46	-3.1	0	0.00	0	0	0
Feb	28.94	-1.7	0	0.00	0	0	0
Mar	36.49	2.5	0.35	0.85	1.03	0.88	0.35
Apr	47.63	8.7	2.31	3.69	1.11	4.09	1.61
May	56.35	13.5	4.51	6.21	1.26	7.82	3.08
Jun	66.28	19.0	7.57	9.27	1.26	11.69	4.60
Jul	70.63	21.5	9.08	10.67	1.28	13.66	5.38
Aug	70.25	21.3	8.94	10.55	1.18	12.45	4.90
Sep	61.78	16.5	6.12	7.86	1.04	8.18	3.22
Oct	50.58	10.3	3.00	4.52	0.96	4.34	1.71
Nov	42.24	5.7	1.22	2.24	0.81	1.82	0.72
Dec	31.75	-0.1	0	0.00	0	0	0
		=	43.09	55.87		64.92	25.56

ET (in cm)= 1.62*(10T/l)^a from Hydrology & Hydraulic Systems by Ram S. Gupta © 1989 pg 79-81 a= 1.174185879

Month	EVAPORATION (MG)
Jan	2.15
Feb	1.95
Mar	2.90
Apr	2.89
May	2.52
Jun	1.66
Jul	-0.60
Aug	-1.80
Sep	2.11
Oct	2.85
Nov	2.69
Dec	3.10
	22.40

Month	
Jan	
Feb	
Mar	
Apr	
May	
Jun	
Jul	
Aug	
Sep	
Oct	
Nov	
Dec	

EVAPOTRANSPIRATION (MG)
0.00
0.00
0.56
2.63
5.02
7.50
8.76
7.98
5.24
 2.78
1.17
0.00
 41.64

Figure 3 University Station Annual Stormwater Budget Pre-Demolition

UNIVERSITY STATION WATER DEMAND

		Proposed Monthly	Evaporative Cooling
Month	Days	Consumption (64,576	Estimated for Office
		GPD) in MG	Buildings (MG)*
Jan	31	2.00	0.00
Feb	28	1.81	0.00
Mar	31	2.00	0.00
Apr	30	1.94	0.00
May	31	2.00	0.00
Jun	30	1.94	0.00
Jul	31	2.00	0.00
Aug	31	2.00	0.00
Sep	30	1.94	0.00
Oct	31	2.00	0.00
Nov	30	1.94	0.00
Dec	31	2.00	0.00
Annual	365	23.57	0.00

Figure 4 University Station Annual Stormwater Budget Post Construction

Annual Water Budget Summary

				A			В	C	
Month	Runoff from Impervious Area (MG)	EVAPORATION (MG)	EVAPOTRANSPIRATION (MG)	Stormwater Infiltration (from Roof, Paved and Pervious Areas) (MG)	Parking Area Runoff Directed to Infiltration Systems ² (MG)	Proposed Monthly Consumption Reduced for	Proposed Monthly Consumption Demands with Evaporative Cooling (MG)	Potential Loss to Irrigation (MG)	Fina Recha
lan	1.45	(2.06)	0.00	5.03	1 75			0.00	
Jan	1.45	(2.90)	0.00	5.95	1.75	(3.12)	(0.02)	0.00	
Feb	1.31	(2.69)	0.00	5.39	1.59	(2.82)	(2.82)	0.00	
Mar	1.99	(4.03)	0.40	7.80	2.41	(3.12)	(3.12)	0.00	
Apr	2.12	(4.16)	1.88	7.01	2.57	(3.02)	(3.02)	0.00	
May	2.04	(4.04)	3.60	5.11	2.46	(3.12)	(3.37)	(0.23)	
Jun	2.06	(3.67)	5.37	4.05	2.49	(3.02)	(3.59)	(0.47)	
Jul	1.83	(1.84)	6.28	3.61	2.22	(3.12)	(3.93)	(0.47)	
Aug	1.39	(0.54)	5.72	2.74	1.68	(3.12)	(3.93)	(0.47)	
Sep	1.77	(3.49)	3.76	3.88	2.14	(3.02)	(3.59)	(0.23)	
Oct	2.11	(4.11)	1.99	6.84	2.55	(3.12)	(3.37)	0.00	
Nov	1.89	(3.79)	0.84	7.01	2.29	(3.02)	(3.02)	0.00	
Dec	2.09	(4.28)	0.00	8.56	2.53	(3.12)	(3.12)	0.00	
Annual	22.06	(39.60)	29.84	67.92	26.68	(36.70)	(39.98)	-1.87	

In the approved prior FEIR the origninal water budget noted that Title V estimates represent a maximum daily demand. For average daily demands, Title V estimates were reduced by 50%. After the correction for average daily flows, a further reduction of assumed for WaterSense water conserving fixtures, which have been suggested for use in the University Station project. USEPA indicates the WaterSense fixtures will result in 20% water conservation.

²An analysis of the daily rain data (2000 to 2009) from the Norwood Airport indicates that 98.4% of all rain events produce less than 2" of rainfall. From this same data, 87.2% of the total rainfall volume was a result of rain events of less than 2". Review of the onsite infiltration systems indicates that upto 2" of rainfall can be stored and infiltrated prior to any outflow. There are 37 acres of non-roof impervious area being directed to infiltration systems and for the purpose of this analysis, it has been assumed that 85% of the monthly rainfall can be infiltrated. We used the Norwood Airport daily records as the closest station at the same elevation and valley climate condition as the locus and compared that data to the NOAA Great Blue Hill monthly data for evapotranspiration.

³This analysis indicates that volume of stormwater available to recharge the aquifer and improve groundwater baseflow to the Neponset River. This analysis accounts for all potable and irrigation demands associated with the University Station project.

Δquifer
ge ³ A+B+C
MG)
2.82
2.57
.68
3.99
.51
0.01
0.78
1.66
).05
3.47
3.99
5.45
6.08
of 20% was

Figure 4 University Station Annual Stormwater Budget Post Construction

UNIVERSITY STATION WATER BUDGET - POST CONSTRUCTION

	University Station
Impervious Area (ac)	63
Roof Area Recharged (ac)	24
Pervious Area (ac)	43
Total (ac)	130

Month	Rainfall (in)	Potential Evapotranspiration (in)	Potential Infiltration (in)	Total Water Budget for Site (MG)
Jan	2.93	0	2.93	10.34
Feb	2.66	0	2.66	9.39
Mar	4.03	0.35	3.69	14.23
Apr	4.30	1.61	2.69	15.17
May	4.12	3.08	1.04	14.54
Jun	4.16	4.60	0.00	14.69
Jul	3.71	5.38	0.00	13.09
Aug	2.81	4.90	0.00	9.92
Sep	3.59	3.22	0.37	12.66
Oct	4.26	1.71	2.56	15.05
Nov	3.83	0.72	3.12	13.53
Dec	4.23	0	4.23	14.93
	44.63	25.56	23.27	157.55

POTENTIAL RECHARGE

Month	Infiltration from Pervious Area (MG)	Recharge from Roofs (MG)	Potential Loss to Irrigation ¹ (MG)	Parking Area Runoff Directed to Infiltration Systems ² (MG)	Total Infiltration (Recharge)3 (MG)
Jan	3.08	1.10	0.00	1.75	5.93
Feb	2.80	1.00	0.00	1.59	5.39
Mar	3.87	1.52	0.00	2.41	7.80
Apr	2.82	1.62	0.00	2.57	7.01
May	1.09	1.55	(0.23)	2.46	4.87
Jun	0.00	1.56	(0.47)	2.49	3.59
Jul	0.00	1.39	(0.47)	2.22	3.15
Aug	0.00	1.06	(0.47)	1.68	2.27
Sep	0.39	1.35	(0.23)	2.14	3.65
Oct	2.69	1.60	0.00	2.55	6.84
Nov	3.28	1.44	0.00	2.29	7.01
Dec	4.44	1.59	0.00	2.53	8.56
	24.46	16.79	-1.87	26.68	66.06

¹Assumes that 10% of the pervious area will be irrigated @ 1" per week mid May thru Mid September ²An analysis of the daily rain data (2000 to 2009) from the Norwood Airport indicates that 98.4% of all rain events produce less than 2" of rainfall. From this same data, 87.2% of the total rainfall volume was a result of rain events of less than 2". Review of the onsite infiltration systems indicates that upto 2" of rainfall can be stored and infiltrated prior to any outflow. There are 37 acres of non-roof impervious area being directed to infiltration systems and for the purpose of this analysis, it has been assumed that 85% of the monthly rainfall can be infiltrated.

³Only considers recharge from roof and pervious surfaces. Potential irrigation volume has been deducted.

Month	EVAPORATION (MG)
Jan	2.96
Feb	2.69
Mar	4.03
Apr	4.16
May	4.04
Jun	3.67
Jul	1.84
Aug	0.54
Sep	3.49
Oct	4.11
Nov	3.79
Dec	4.28
	39.60

N

POTENTIAL RUNOFF

Month	Runoff from Impervious Area ¹ (MG)
Jan	1.45
Feb	1.31
Mar	1.99
Apr	2.12
May	2.04
Jun	2.06
Jul	1.83
Aug	1.39
Sep	1.77
Oct	2.11
Nov	1.89
Dec	2.09
	22.06

1.Accounts for impervious walks and paved area that are not directed to recharge systems.

EVAPOTRANSPIRATION CALCULATION (BASED ON NORWOOD AIRPORT TEMP DATA 2000-2009)

Month	Temp (d F)	Temp (d C)	i	ET (cm) (unadjusted)	Daylight Factor	ET (cm) (adjusted)	ET (in)
Jan	26.46	-3.1	0	0.00	0	0	0
Feb	28.94	-1.7	0	0.00	0	0	0
Mar	36.49	2.5	0.35	0.85	1.03	0.88	0.35
Apr	47.63	8.7	2.31	3.69	1.11	4.09	1.61
May	56.35	13.5	4.51	6.21	1.26	7.82	3.08
Jun	66.28	19.0	7.57	9.27	1.26	11.69	4.60
Jul	70.63	21.5	9.08	10.67	1.28	13.66	5.38
Aug	70.25	21.3	8.94	10.55	1.18	12.45	4.90
Sep	61.78	16.5	6.12	7.86	1.04	8.18	3.22
Oct	50.58	10.3	3.00	4.52	0.96	4.34	1.71
Nov	42.24	5.7	1.22	2.24	0.81	1.82	0.72
Dec	31.75	-0.1	0	0.00	0	0	0
		l=	43.09	55.87		64.92	25.56

ET (in cm)= 1.62*(10T/I)^a

from Hydrology & Hydraulic Systems by Ram S. Gupta © 1989 pg 79-81

a= 1.174185879

onth	EVAPOTRANSPIRATION (MG)
Jan	0.00
Feb	0.00
Mar	0.40
Apr	1.88
Иау	3.60
Jun	5.37
Jul	6.28
Aug	5.72
Sep	3.76
Oct	1.99
Nov	0.84
Dec	0.00
	29.84

UNIVERSITY STATION WATER DEMAND

Month	Days	Proposed Monthly Consumption	Evaporative Cooling Estimated for Office
		(251,384 GPD) in MG	Buildings (MG)*
Jan	31	7.79	0.00
Feb	28	7.04	0.00
Mar	31	7.79	0.00
Apr	30	7.54	0.00
May	31	7.79	0.25
Jun	30	7.54	0.58
Jul	31	7.79	0.81
Aug	31	7.79	0.81
Sep	30	7.54	0.58
Oct	31	7.79	0.25
Nov	30	7.54	0.00
Dec	31	7.79	0.00
Annual	365	91.76	3.28

*As part of the Westwood Station project, evaporative cooling estimates were generated for 1.5 MSF of office space. The University Station Office space has been reduced to 325,000 sf or just 22% of the previous project. Therefore the previous evaporative cooling estimates have been reduced to 22% of the Westwood Station estimate.

5.0 Nitrogen Loading

The Dedham-Westwood Water District has requested that a nitrogen loading estimate be prepared due to the significant volume of groundwater recharge that will be provided relative to the District's groundwater supply wells. The primary source of nitrogen will be the impervious parking surfaces within University Station. Utilizing a study entitled "Stormwater Best Management Practices (BMP) Performance Analysis" prepared for the US EPA Region 1 by Tetra Tech, dated March 2010, total nitrogen loading rates for commercial areas has been estimated at 9.8 pounds of total nitrogen per year per acre of impervious parking surface. It should be noted that this study was conducted in the Boston area. Therefore, the estimates provided in the report are appropriate due to the relatively close proximity of the study.

To develop a total nitrogen loading rate, the overall impervious parking surfaces that are directed to infiltration system were multiplied by 9.8 pounds of nitrogen and then annualized over the predicted recharge volume. As shown in Table 1, 36.8 acres of impervious parking surfaces are directed to subsurface recharge systems. MA DEP estimates that subsurface infiltration systems will reduce nitrogen loading rates by 50%. Overall, the annual total nitrogen loading is estimated to be 181 pounds per year.

As shown in the water budget, the annual groundwater recharge volume is anticipated to be 67.93 million gallons per year. Therefore to estimate the total nitrogen concentration within the infiltrated stormwater, the 181 pounds of total nitrogen is divided by the 67.93 million gallons of infiltrated stormwater. The resulting concentration is 2.66 lbs/MG or 0.32 mg/L. Please see Appendix D for total nitrogen loading calculations.

There is not an EPA drinking water standard for Total Nitrogen but a Nitrate (NO3) limit <1.0 mg/l. This low resulting nitrogen concentration is not the resulting nitrogen level in the groundwater but only the average annual concentration in the stormwater which is collected, treated and infiltrated into the soils on-site. The resulting groundwater concentration from this infiltrated volume would be much less due to the significantly larger volume within the aquifer.

6.0 Summary

Water budget calculations have been developed that show that the University Station project will provide groundwater recharge in a quantity that is not only in excess of the projected water consumption, but also in excess of pre-demolition groundwater recharge. Construction of University Station will enhance groundwater recharge to the local aquifer and will improve base flow to the Neponset River. Also, nitrogen loading calculations have been provided which indicates that increases in total nitrogen concentrations will be minimal.

Appendix A

Title V Wastewater Flow Estimate

Building	Туре	S.F.	Title V Peak Flow (GPD)
Retail A	Retail	36,000	1,800
Retail B	Retail	14,100	705
Retail C	Retail	22,180	1,109
Retail E	Retail	12,300	615
Retail F	Retail	6,000	300
Retail G	Retail	10,530	527
Retail H	Retail	17,300	865
Retail I	Retail	35,740	1,787
Retail J	Retail	139,060	6,953
Retail K	Supermarket	140,000	13,580
Retail L	Retail	50,900	2,545
Retail N	Retail	12,850	643
Retail O	Retail	19,040	952
Retail P	Retail	2,500	125
Retail Q	Retail	23,180	1,159
Retail R - Lifetime Fitness	Retail	112,000	45,000
Retail T	Retail	10,000	500
Retail U	Retail	10,000	500
Office A	Office	95,400	7,155
Office B	Office	122,100	9,158
Office C	Office	122,100	9,158
Office W	Office	60,000	4,500
Office X	Office	75,000	5,625
Restaurant A (200 seats)	Restaurant	8,000	7,000
Restaurant B (150 seats)	Restaurant	6,400	5,250
Restaurant C (125 seats)	Restaurant	4,800	4,375
Residential A1 (205 beds)	Residential	146,778	22,550
Residential A2 (272 beds)	Residential	204,900	29,920
Residential C (188 beds)	Residential	NA	20,680
Residential B (125 beds)	Residential	NA	13,750
Hotel V (160 beds)	Hotel	NA	17,600
Assisted Living (100 units)	Senior	NA	15,000
		Totals	251,384

Notes: 1.The location of all office uses has not yet been determined. For the purposes of the sewer hydraulic analysis office use has been considered in the upper office area as well as the Village Retail area. This table is not meant to suggest that office use will exceed 325,000 square feet. These calculations will be updated as the building program is further refined.

2. Residential bed counts assumes a split of approxiomately 60% one bedroom and 40% two bedrooms over a total of 650 residences.

Appendix B

US EPA WaterSense Documention

The WaterSense® Label

Research has shown that by using water-efficient products and practices, homeowners can help save natural resources and reduce their water consumption and costs. In order to realize these savings, consumers need to be able to identify products and services that use less water while performing as well as or better than conventional models.

WaterSense, a partnership program sponsored by the U.S. Environmental Protection Agency (EPA), is making it easy to find and select waterefficient products with a label backed by independent testing and certification. WaterSense will also recognize professional service programs that incorporate water efficiency.

In order to use the label, a company must sign a WaterSense partnership agreement. Among other things, the partnership agreement defines the roles and responsibilities of EPA and the partnering organization, as well as proper use of the label on products, on packaging, and in marketing and other promo-

tional materials. Products that bear the WaterSense label meet all the criteria in EPA's specifications for water efficiency and performance. Generally speaking, WaterSense labeled products will be about 20 percent more water efficient than conventional models in the same category. In addition, WaterSense labeled products perform their intended function as well as or better than their less efficient counterparts.

Look for the Label

The WaterSense label first appeared on professional certification programs for landscape irrigation

professionals. These WaterSense labeled programs verify professional proficiency in water-efficient irrigation system design, installation/ maintenance, and auditing. The program will allow homeowners to ask for professionals who partner with the WaterSense program.

WaterSense also has made the label available for waterefficient products in the home, beginning with toilets. As defined by EPA's WaterSense specification, high-efficiency toilets (HETs) use less than 1.3 gallons per flush.

Find the most up-to-date list of labeled products and programs on the WaterSense Web registry in mid-2007. Please visit <www.epa.gov/watersense>.

Appendix C

Norwood Airport Rain Data

2000 PRECIPITATION EVENTS SOURCE 2000-2009 EVENTS: WEATHER STATION KOWD-WEATHER UNDERGROUND

	Total # of Rain	Average Monthly
MONTH	<u>Events</u>	Rainfall (inches)
January	111	2.93
February	85	2.66
March	116	4.03
April	134	4.30
May	131	4.12
June	142	4.16
July	122	3.71
August	114	2.81
September	112	3.59
October	114	4.26
November	118	3.83
December	118	4.23
TOTAL	1417	44.63

Summary of Annual Rainfall Events Norword Airport

YEAR	# of Events	Total rainfall	# of events > 2.0 inches	Total rainfall < 2.5 inches
2000	123	38.97	2	34.25
2001	127	37.31	3	29.61
2002	147	44.23	0	44.23
2003	160	47.09	0	47.09
2004	148	45.02	4	35.38
2005	139	51.94	2	44.77
2006	132	47.55	4	38.08
2007	140	38.57	0	38.57
2008	155	50.02	6	33.81
2009	146	45.64	1	43.46
TOTALS	1417	446.34	22	389.25

87.2% of the total rainfall volume during the 10 year period resulted from events that were greater than 2.0 inches

1.6% of the total rainfall events during the 10 year period resulted in events that were greater than 2.0 inches

University Station

Water Budget Norwood Average Temp by Month and Year

	<u>2000</u>	<u>2001</u>	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>10-year Avg Temp</u>
Jan	25	25	33	22	19	24	35	31	29	20	26.46
Feb	31	29	33	23	30	27	30	25	31	30	28.94
March	41	34	39	36	37	32	37	37	37	36	36.49
April	46	48	50	44	49	49	47	45	48	49	47.63
May	57	58	56	54	59	52	57	59	54	58	56.35
June	66	68	65	65	64	69	68	67	67	63	66.28
July	67	67	72	72	69	71	75	71	73	68	70.63
August	67	72	71	72	70	73	69	69	67	71	70.25
September	60	62	65	63	62	64	60	63	61	59	61.78
October	50	51	48	49	51	54	50	56	49	49	50.58
November	41	44	40	43	40	43	47	39	40	46	42.24
December	26	36	30	33	32	29	38	29	34	31	31.75

Appendix D

2.02-Inch Recharge Calculation

3659-12003C-Dynamic Field Method-01 Prepared by {enter your company name here} HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.168	49	50-75% Grass cover, Fair, HSG A (S7)
7.994	39	>75% Grass cover, Good, HSG A (60S, S10.1, S11.1, S27, S55, S59.1, S59.2, S7)
0.255	61	>75% Grass cover, Good, HSG B (S55)
36.387	98	Paved parking, HSG A (60S, S10.1, S11.1, S27, S59.1, S59.2, S7)
23.898	98	Roofs, HSG A (47.4S, 60S, S10.1, S11.1, S27, S55, S59.1, S59.2, S61, S8, S9)
68.702	91	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
68.447	HSG A	47.4S, 60S, S10.1, S11.1, S27, S55, S59.1, S59.2, S61, S7, S8, S9
0.255	HSG B	S55
0.000	HSG C	
0.000	HSG D	
0.000	Other	
68.702		TOTAL AREA

Prepared by {enter	er your compar	ny name here	}
HydroCAD® 10.00 s	s/n 00983 © 2012	2 HydroCAD Sof	tware Solutions L

Printed 3/19/2013 LC Page 4

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.168	0.000	0.000	0.000	0.000	0.168	50-75% Grass cover, Fair	S7
7.994	0.255	0.000	0.000	0.000	8.249	>75% Grass cover, Good	60S,
							S10.1,
							S11.1,
							S27,
							S55,
							S59.1,
							S59.2, S7
36.387	0.000	0.000	0.000	0.000	36.387	Paved parking	60S,
							S10.1,
							S11.1,
							S27,
							S59.1,
							S59.2, S7
23.898	0.000	0.000	0.000	0.000	23.898	Roofs	47.4S,
							60S,
							S10.1,
							S11.1,
							S27,
							S55,
							S59.1,
							S59.2,
							S61, S8,
							S9
68.447	0.255	0.000	0.000	0.000	68.702	TOTAL AREA	

Ground Covers (all nodes)

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 5

3659-12003C-Dynamic Field Method-01 Prepared by {enter your company name here} HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Time span=6.00-18.00 hrs, dt=0.05 hrs, 241 points
Runoff by SCS TR-20 method, UH=SCS
Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 47.4S:	Runoff Area=7,150 sf 100.00% Impervious Runoff Depth>1.61" Tc=5.0 min CN=98 Runoff=0.32 cfs 0.022 af
Subcatchment 60S:	Runoff Area=409,177 sf 67.76% Impervious Runoff Depth>0.45" Tc=5.0 min CN=79 Runoff=5.36 cfs 0.352 af
Subcatchment S10.1: Retail Core Sou	th Runoff Area=558,326 sf 95.19% Impervious Runoff Depth>1.36" Tc=5.0 min CN=95 Runoff=22.11 cfs 1.452 af
Subcatchment S11.1: Retail Core Nort	h Runoff Area=280,057 sf 93.60% Impervious Runoff Depth>1.28" Tc=5.0 min CN=94 Runoff=10.56 cfs 0.684 af
Subcatchment S27:	Runoff Area=304,169 sf 94.00% Impervious Runoff Depth>1.28" Tc=5.0 min CN=94 Runoff=11.47 cfs 0.743 af
Subcatchment S55:	Runoff Area=163,904 sf 84.64% Impervious Runoff Depth>0.99" Tc=5.0 min CN=90 Runoff=4.91 cfs 0.309 af
Subcatchment S59.1:	Runoff Area=324,960 sf 87.66% Impervious Runoff Depth>1.05" Tc=5.0 min CN=91 Runoff=10.33 cfs 0.655 af
Subcatchment S59.2:	Runoff Area=163,215 sf 83.18% Impervious Runoff Depth>0.86" Tc=5.0 min CN=88 Runoff=4.31 cfs 0.270 af
Subcatchment S61: Office Roof	Runoff Area=113,278 sf 100.00% Impervious Runoff Depth>1.61" Tc=5.0 min CN=98 Runoff=5.04 cfs 0.350 af
Subcatchment S7: Retail Core Loadin	g Runoff Area=255,978 sf 69.16% Impervious Runoff Depth>0.49" Tc=5.0 min CN=80 Runoff=3.67 cfs 0.238 af
Subcatchment S8: Retail Core South	Runoff Area=221,180 sf 100.00% Impervious Runoff Depth>1.61" Tc=5.0 min CN=98 Runoff=9.84 cfs 0.683 af
Subcatchment S9: Retail Core North	Runoff Area=191,272 sf 100.00% Impervious Runoff Depth>1.61" Tc=5.0 min CN=98 Runoff=8.51 cfs 0.591 af
Pond 10P: Discarded=21.3	Peak Elev=47.31' Storage=9,584 cf Inflow=36.28 cfs 2.375 af 34 cfs 2.372 af Primary=0.00 cfs 0.000 af Outflow=21.34 cfs 2.372 af
Pond 11P: Discarded=8	Peak Elev=48.73' Storage=16,830 cf Inflow=28.32 cfs 1.933 af .21 cfs 1.932 af Primary=0.00 cfs 0.000 af Outflow=8.21 cfs 1.932 af
Pond 27P: Discarded=2	Peak Elev=48.62' Storage=9,259 cf Inflow=11.47 cfs 0.743 af .39 cfs 0.742 af Primary=0.00 cfs 0.000 af Outflow=2.39 cfs 0.742 af
Pond 47.4P: Discarded=0	Peak Elev=48.00' Storage=1 cf Inflow=0.32 cfs 0.022 af .32 cfs 0.022 af Primary=0.00 cfs 0.000 af Outflow=0.32 cfs 0.022 af

3659-12003C-Dynamic Field Method-01
Prepared by {enter your company name here}

HydroCAD® 1	0.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC	Page 6
Pond 59.1P:	Peak Elev=47.87' Storage=10,912 cf Inflow=10.33 cfs Discarded=1.49 cfs 0.649 af Primary=0.00 cfs 0.000 af Outflow=1.49 cfs	0.655 af 0.649 af
Pond 59.2P:	Peak Elev=47.81' Storage=4,271 cf Inflow=4.31 cfs Discarded=0.60 cfs 0.269 af Primary=0.00 cfs 0.000 af Outflow=0.60 cfs	0.270 af 0.269 af
Pond 60P:	Peak Elev=47.79' Storage=5,147 cf Inflow=5.36 cfs Discarded=0.82 cfs 0.351 af Primary=0.00 cfs 0.000 af Outflow=0.82 cfs	0.352 af 0.351 af
	Total Dunoff Area CO 700 as Dunoff Valuma C 250 of Average Dunoff Dan	46 4 44

Total Runoff Area = 68.702 ac Runoff Volume = 6.350 af Average Runoff Depth = 1.11" 12.25% Pervious = 8.417 ac 87.75% Impervious = 60.285 ac

Summary for Subcatchment 47.4S:

Runoff = 0.32 cfs @ 12.07 hrs, Volume= 0.022 af, Depth> 1.61"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Infil Rainfall=2.02"

A	rea (sf)	CN	Description		
	7,150	98	Roofs, HSC	βA	
	7,150		100.00% In	npervious A	Area
Tc (min)	Length (feet)	Slop (ft/f	e Velocity	Capacity (cfs)	Description
5.0			, (,	()	Direct Entry,
			•		

Summary for Subcatchment 60S:

Runoff	=	5.36 cfs @	12.09 hrs,	Volume=	0.352 af, Depth> 0.45"
--------	---	------------	------------	---------	------------------------

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Infil Rainfall=2.02"

Area (sf)	CN	Description			
131,912	39	>75% Gras	s cover, Go	ood, HSG A	
197,733	98	Paved park	ing, HSG A	A	
79,532	98	Roofs, HSC	6 A		
409,177	79	Weighted A	verage		
131,912		32.24% Pervious Area			
277,265		67.76% lmp	pervious Ar	rea	
Tc Length	Slop	e Velocity	Capacity	Description	
(min) (feet)	(ft/1	t) (ft/sec)	(cfs)		
5.0				Direct Entry,	

Summary for Subcatchment S10.1: Retail Core South

Runoff = 22.11 cfs @ 12.07 hrs, Volume= 1.452 af, Depth> 1.36"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Infil Rainfall=2.02"

Area (sf)	CN	Description
26,881	39	>75% Grass cover, Good, HSG A
435,993	98	Paved parking, HSG A
95,452	98	Roofs, HSG A
558,326	95	Weighted Average
26,881		4.81% Pervious Area
531,445		95.19% Impervious Area

3659-12003C-Dynamic Field Method-01 Prepared by {enter your company name here}	Type III 24-hr	Infil Rainfall=2.02" Printed 3/19/2013
HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC		Page 8
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)		
5.0 Direct Entry,		
Summary for Subcatchment S11.1: Ret	tail Core North	n
Runoff = 10.56 cfs @ 12.07 hrs, Volume= 0.684 a	if, Depth> 1.28"	
Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs Type III 24-hr Infil Rainfall=2.02"	s, dt= 0.05 hrs	
Area (sf) CN Description		
17,929 39 >75% Grass cover, Good, HSG A		
259,625 98 Paved parking, HSG A		
2,503 98 Roofs, HSG A		
280,057 94 Weighted Average 17 929 6 40% Pervious Area		
262,128 93.60% Impervious Area		
Ic Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)		
5.0 Direct Entry,		
Summary for Subcatchment s	527:	
Runoff = 11.47 cfs @ 12.07 hrs, Volume= 0.743 a	f, Depth> 1.28"	
Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs Type III 24-hr Infil Rainfall=2.02"	s, dt= 0.05 hrs	
Area (sf) CN Description		
18,264 39 >75% Grass cover, Good, HSG A		
230,041 98 Paved parking, HSG A		
304 169 94 Weighted Average		
18,264 6.00% Pervious Area		
285,905 94.00% Impervious Area		
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)		
5.0 Direct Entry,		
Summary for Subcatchment S	S55:	
Runoff $-$ 4.91 cfs @ 12.08 brs Volume 0.300 c	f Denths 0.00"	
	a, Depuiz 0.33	
Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs Type III 24-hr Infil Rainfall=2.02"	s, dt= 0.05 hrs	

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

	Area (sf)	CN	Description			
	14,073	39	>75% Gras	s cover, Go	bod, HSG A	
	11,103	61	>75% Gras	s cover, Go	bod, HSG B	
*	138,728	98	Roofs, HSG	βA		
	163,904	90	Weighted A	verage		
	25,176		15.36% Pervious Area			
	138,728		84.64% Imp	pervious Ar	ea	
	Ta Lanath	Clar	• Valasitu	Conceitur	Description	
	IC Length	Siop		Capacity	Description	
	(min) (leet)	(17/1	t (t/sec)	(CIS)		
	5.0				Direct Entry,	

Summary for Subcatchment S59.1:

Runoff = 10.33 cfs @ 12.08 hrs, Volume= 0.655 af, Depth> 1.05"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Infil Rainfall=2.02"

Ar	ea (sf)	CN	Description		
4	40,085	39	>75% Grass	s cover, Go	bod, HSG A
15	59,447	98	Paved park	ing, HSG A	A
12	25,428	98	Roofs, HSC	Ā	
32	24,960	91	Weighted A	verage	
4	40,085		12.34% Pervious Area		
28	34,875		87.66% Imp	ervious Are	ea
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
5.0					Direct Entry,

Summary for Subcatchment S59.2:

Runoff = 4.31 cfs @ 12.08 hrs, Volume= 0.270 af, Depth> 0.86"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Infil Rainfall=2.02"

Area (sf)	CN	Description
27,457	39	>75% Grass cover, Good, HSG A
125,158	98	Paved parking, HSG A
10,600	98	Roofs, HSG A
163,215	88	Weighted Average
27,457		16.82% Pervious Area
135,758		83.18% Impervious Area

3659-12003C-Dynamic Field Method-01	Type III 24-hr Infil Rainfall=2.02"				
HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC	Page 10				
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
5.0 Direct Entry,					
Commence for Code and Code					
Summary for Subcatchment Sol: 0	Shice Roof				
Runoff = 5.04 cfs @ 12.07 hrs, Volume= 0.350 a	af, Depth> 1.61"				
Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs Type III 24-hr Infil Rainfall=2.02"	s, dt= 0.05 hrs				
Area (sf) CN Description					
113,278 98 Roofs, HSG A					
113,278 100.00% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
5.0 Direct Entry,					
Summery for Subactabulant S7: Data					
Summary for Subcatchment S7: Retai	Core Loading				
Runoff = 3.67 cfs @ 12.09 hrs, Volume= 0.238 a	af, Depth> 0.49"				
Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs Type III 24-hr Infil Rainfall=2.02"	s, dt= 0.05 hrs				
Area (sf) CN Description					
71,631 39 >75% Grass cover, Good, HSG A					
7,309 49 50-75% Grass cover, Fair, HSG A					
255,978 80 Weighted Average					
78,940 30.84% Pervious Area					
177,038 69.16% Impervious Area					
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)					
5.0 Direct Entry,					
Summary for Subcatchment S8: Retail (Core South Roof				
Runoff = 9.84 cfs @ 12.07 hrs, Volume= 0.683 a	af, Depth> 1.61"				
Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Infil Rainfall=2.02"					

Area (sf)	CN	Description
221,180	98	Roofs, HSG A
221,180		100.00% Impervious Area

3659-12003C-E	Dynamic Field	Method-01		Type III 24-h	r Infil Rainfall=2.02"
Prepared by {en	ter your company	y name here	}		Printed 3/19/2013
HydroCAD® 10.00	s/n 00983 © 2012	HydroCAD Sof	tware Solutions	LLC	Page 11
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec	Capacity (cfs)	Description		
5.0			Direct Entry,		
	Summary for	Subcatchn	nent S9: Re	tail Core North R	oof
Runoff =	8.51 cfs @ 12.	07 hrs, Volun	ne= 0.	591 af, Depth> 1.6 ⁻	["
Runoff by SCS TF Type III 24-hr Infi	R-20 method, UH= I Rainfall=2.02"	SCS, Time Sj	oan= 6.00-18.0	00 hrs, dt= 0.05 hrs	
Area (sf)	CN Descriptio	n			
191,272	<u>98 Roots, HS</u>	<u>GA</u>			
191,272	100.00%	mpervious Are	ea		
Tc Length (min) (feet)	Slope Velocity (ft/ft) (ft/sec)	v Capacity (cfs)	Description		
5.0			Direct Entry,		
		Summary	y for Pond 1	0P:	
Inflow Area = Inflow = Outflow = Discarded = Primary =	25.123 ac, 88.69 36.28 cfs @ 12. 21.34 cfs @ 12. 21.34 cfs @ 12. 0.00 cfs @ 6.	9% Impervious 07 hrs, Volun 19 hrs, Volun 19 hrs, Volun 00 hrs, Volun	s, Inflow Dept ne= 2. ne= 2. ne= 2. ne= 0.	h > 1.13" for Infil 375 af 372 af, Atten= 41%, 372 af 000 af	event Lag= 6.9 min
Routing by Stor-Ir Peak Elev= 47.31	nd method, Time S ' @ 12.19 hrs Su	pan= 6.00-18 rf.Area= 61,0	.00 hrs, dt= 0.0 50 sf Storage	05 hrs ≔ 9,584 cf	
Plug-Flow detenti Center-of-Mass d	on time= 4.0 min c et. time= 3.6 min (alculated for 2 760.1 - 756.5	2.362 af (99% 5)	of inflow)	
Volume Inv	ert Avail Stora	ide Storade	Description		
#1 47.0 #2 47.0	00' 150,150 00' 257,400) cf Custom) cf Custom 793,650	Stage Data (Stage Data (cf Overall - 15	Prismatic)Listed belo Prismatic)Listed belo 50,150 cf Embedded	ow Inside #2 ow (Recalc) = 643,500 cf_x 40.0% Voids
	407,550) cf Total Av	ailable Storage	Э	
Elevation (feet)	Surf.Area (sq-ft) (Inc.Store cubic-feet)	Cum.Store (cubic-feet))	
47.00	11,550	0	()	
48.00	11,550	11,550	11,550)	
49.00	11,550 11,550	11,550 11 550	23,100)	
50.00	11,550	11,550	34,030 16 200)	
52.00	11.550	11.550	57.750	,)	
53.00	11,550	11,550	69,300)	
53.25 60.00	11,550 11,550	2,888 77,963	72,188 150,150	})	

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 12

Prepared by {en	ter your c	ompany	name here	e}	
HydroCAD® 10.00	s/n 00983	© 2012 H	ydroCAD So	ftware Solution	ons LLC

Elevatio	on S	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
47.0)0	61,050	0	0	
48.0	00	61,050	61,050	61,050	
49.0	00	61,050	61,050	122,100	
50.0	00	61,050	61,050	183,150	
51.0	00	61,050	61,050	244,200	
52.0	00	61,050	61,050	305,250	
53.0	00	61,050	61,050	366,300	
53.2	25	61,050	15,263	381,563	
60.0	00	61,050	412,088	793,650	
Device	Routing	Inver	t Outlet Devices		
#1	Discarded	47.00	' 15.000 in/hr E	xfiltration over Sur	face area
			Conductivity to	Groundwater Eleva	tion $= 0.00$
#2	Primary	49.50	36.0" Vert. Or	fice/Grate C= 0.60	00

Discarded OutFlow Max=21.33 cfs @ 12.19 hrs HW=47.30' (Free Discharge) **1=Exfiltration** (Controls 21.33 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) **2=Orifice/Grate** (Controls 0.00 cfs)

Summary for Pond 11P:

Inflow Area	a =	15.832 ac, 9	96.35% Impe	ervious,	Inflow Depth >	1.47"	for Infil e	event	
Inflow	=	28.32 cfs @	12.07 hrs,	Volume=	= 1.933	af			
Outflow	=	8.21 cfs @	12.40 hrs,	Volume=	= 1.932	af, Atte	en= 71%,	Lag=	19.7 min
Discarded	=	8.21 cfs @	12.40 hrs,	Volume=	= 1.932	af		-	
Primary	=	0.00 cfs @	6.00 hrs,	Volume=	= 0.000	af			

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 48.73' @ 12.40 hrs Surf.Area= 18,500 sf Storage= 16,830 cf

Plug-Flow detention time= 12.0 min calculated for 1.923 af (99% of inflow) Center-of-Mass det. time= 11.5 min (750.9 - 739.4)

Volume	Invert	Avail.Storage	Storage Description
#1	47.00'	50,050 cf	Custom Stage Data (Prismatic)Listed below Inside #2
#2	47.00'	76,180 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			240,500 cf Overall - 50,050 cf Embedded = 190,450 cf x 40.0% Voids
		126,230 cf	Total Available Storage

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 13

Prepared by {ent	er your c	ompany	name here	}	
HydroCAD® 10.00	s/n 00983	© 2012 H	ydroCAD Sof	tware Solutio	ons LLC

Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
47.0	<u>, , , , , , , , , , , , , , , , , , , </u>	2 950			
47.0		3,000	3 850	3 850	
40.0 /0 (3,850	3,850	3,030 7,700	
	0	3,850	3,850	11 550	
51.0	0	3 850	3 850	15 400	
52.0	0	3.850	3.850	19,250	
53.0	00	3.850	3.850	23,100	
54.0	00	3,850	3.850	26,950	
54.5	50	3,850	1,925	28,875	
60.0	00	3,850	21,175	50,050	
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
47.0	00	18,500	0	0	
48.0	00	18,500	18,500	18,500	
49.0	00	18,500	18,500	37,000	
50.0	00	18,500	18,500	55,500	
51.0	00	18,500	18,500	74,000	
52.0	00	18,500	18,500	92,500	
53.0	00	18,500	18,500	111,000	
54.0	00	18,500	18,500	129,500	
54.5	50	18,500	9,250	138,750	
60.0	00	18,500	101,750	240,500	
Device	Routing	Invert	Outlet Device	S	
#1	Discarded	47.00'	18.500 in/hr E	Exfiltration over	r Surface area
			Conductivity to	o Groundwater I	Elevation = 0.00'
#2	Primary	49.10'	36.0" Vert. O	rifice/Grate C=	= 0.600
Discourt		. Mari 0.04 af	- @ 40.40 h		

Discarded OutFlow Max=8.21 cfs @ 12.40 hrs HW=48.73' (Free Discharge) **1=Exfiltration** (Controls 8.21 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) ←2=Orifice/Grate (Controls 0.00 cfs)

Summary for Pond 27P:

Inflow Area	a =	6.983 ac, 9	4.00% Impervious,	Inflow Depth >	1.28" f	or Infil ev	vent
Inflow	=	11.47 cfs @	12.07 hrs, Volume	e= 0.743	af		
Outflow	=	2.39 cfs @	12.50 hrs, Volume	∋= 0.742	af, Atten	= 79%, L	_ag= 25.4 min
Discarded	=	2.39 cfs @	12.50 hrs, Volume	9= 0.742	af		
Primary	=	0.00 cfs @	6.00 hrs, Volume	€= 0.000	af		

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 48.62' @ 12.50 hrs Surf.Area= 11,100 sf Storage= 9,259 cf

Plug-Flow detention time= 26.5 min calculated for 0.742 af (100% of inflow) Center-of-Mass det. time= 25.8 min (780.8 - 755.0)

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 14

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Volume	Inv	ert Av	ail.Storag	e Storage	Description				
#1	47.0)0'	27,300 0	of Custom	Stage Data	a (Prisi	matic)Listed be	elow Inside #2	2
#2	47.0)0'	46,800 0	of Custom	n Stage Data	a (Prisı	matic)Listed be	elow (Recalc)	
				144,300	cf Overall -	27,300) cf Embedded	l = 117,000 cf	x 40.0% Voids
			74,100 0	of Total Av	ailable Stora	age			
Flevatio	วท	Surf Area		Inc Store	Cum Ste	ore			
(fee	et)	(sa-ft)	(CL	ubic-feet)	(cubic-fe	et)			
47.0	<u>,</u>)()	2.100)	0		0			
48.0	00	2,100		2,100	2,1	00			
49.0	00	2,100		2,100	4,2	200			
50.0	00	2,100)	2,100	6,3	300			
51.0	00	2,100		2,100	8,4	100			
52.0	00	2,100		2,100	10,5	500			
53.0	00	2,100		2,100	12,6	600			
54.0	00	2,100		2,100	14,7	' 00			
60.0	00	2,100		12,600	27,3	800			
Elevatio	on	Surf.Area	L I	Inc.Store	Cum.Ste	ore			
(fee	et)	(sq-ft)) (CL	ubic-feet)	(cubic-fe	et)			
47.0	00	11,100		0		0			
48.0	00	11,100		11,100	11,1	00			
49.0	00	11,100		11,100	22,2	200			
50.0	00	11,100		11,100	33,3	300			
51.0	00	11,100		11,100	44,4	100			
52.0	00	11,100		11,100	55,5	500			
53.0	00	11,100		11,100	66,6	600			
54.0	00	11,100		11,100	77,7	200			
60.0	00	11,100		66,600	144,3	800			
Device	Routing	I	nvert O	utlet Device	S				
#1	Discarde	ed 4	7.00' 9.	000 in/hr E	xfiltration o	ver Su	Irface area		
#2	Primary	5	50.00' 2 4	onductivity t 4.0" Vert. O	o Groundwa rifice/Grate	ter Ele X 2.00	C = 0.600		
Discard [€] —1=Ex	ed OutFlo	ow Max=2 (Controls	2.39 cfs @ 5 2.39 cfs)	2 12.50 hrs	HW=48.62'	(Free	Discharge)		
Primary [€] —2=Or	OutFlow ifice/Grat	Max=0.0 e(Contro	0 cfs @ 6 bls 0.00 cf	.00 hrs HW s)	/=47.00' (Fr	ree Dis	charge)		
	Summary for Pond 47.4P:								

Inflow Area	ι =	0.164 ac,10	0.00% Impe	ervious, Inflow D	epth > 1.6	61" for Infil	event
Inflow	=	0.32 cfs @	12.07 hrs,	Volume=	0.022 af		
Outflow	=	0.32 cfs @	12.07 hrs,	Volume=	0.022 af,	Atten= 0%,	Lag= 0.1 min
Discarded	=	0.32 cfs @	12.07 hrs,	Volume=	0.022 af		•
Primary	=	0.00 cfs @	6.00 hrs,	Volume=	0.000 af		

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Peak Elev= 48.00' @ 12.07 hrs Surf.Area= 368 sf Storage= 1 cf

Plug-Flow detention time= 0.0 min calculated for 0.022 af (100% of inflow) Center-of-Mass det. time= 0.0 min (733.2 - 733.1)

Volume	Invert	Avail.Sto	rage Storage	Description	
#1	48.00'	2,61	12 cf Custon	n Stage Data (Pris	matic)Listed below (Recalc)
Elevatio (fee	n Su t)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
48.0 49.0 50.0	0 0 0	366 1,265 2,328	0 816 1,797	0 816 2,612	
Device	Routing	Invert	Outlet Device	S	
#1 #2	Discarded Primary	48.00' 49.25'	3.00 cfs Exfi 24.0" x 24.0" Limited to we	Itration at all eleve Horiz. Orifice/Gra ir flow at low heads	ations ate C= 0.600

Discarded OutFlow Max=3.00 cfs @ 12.07 hrs HW=48.00' (Free Discharge) **1=Exfiltration** (Exfiltration Controls 3.00 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=48.00' (Free Discharge)

Summary for Pond 59.1P:

Inflow Area	a =	7.460 ac, 8	87.66% Impe	ervious,	Inflow Depth >	1.05"	for Infil e	event
Inflow	=	10.33 cfs @	12.08 hrs,	Volume=	= 0.655	af		
Outflow	=	1.49 cfs @	12.61 hrs,	Volume=	= 0.649	af, Atte	en= 86%,	Lag= 32.1 min
Discarded	=	1.49 cfs @	12.61 hrs,	Volume=	= 0.649	af		
Primary	=	0.00 cfs @	6.00 hrs,	Volume=	= 0.000	af		

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 47.87' @ 12.61 hrs Surf.Area= 21,120 sf Storage= 10,912 cf

Plug-Flow detention time= 64.3 min calculated for 0.649 af (99% of inflow) Center-of-Mass det. time= 61.6 min (829.9 - 768.3)

Volume	Invert	Avail.Storage	Storage Description
#1	47.00'	87,360 cf	Custom Stage Data (Prismatic)Listed below x 2 Inside #2
#2	47.00'	74,880 cf	Custom Stage Data (Prismatic)Listed below (Recalc)
			274,560 cf Overall - 87,360 cf Embedded = 187,200 cf x 40.0% Voids
		162,240 cf	Total Available Storage

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 16

Ρ	repared by {er	iter your c	ompany	name he	ere}		
H	vdroCAD® 10.00	s/n 00983	© 2012 H	ydroCAD	Software	Solutions	LLC

Elevatio (fee	on S et)	urf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	
47.0)0	3.360	0	0	
48.0	00	3.360	3.360	3.360	
49.0	00	3,360	3,360	6,720	
50.0	00	3,360	3,360	10,080	
51.0	00	3,360	3,360	13,440	
52.0	00	3,360	3,360	16,800	
52.5	50	3,360	1,680	18,480	
60.0	00	3,360	25,200	43,680	
Elevatio	on S	urf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
47.0	00	21,120	0	0	
48.0	00	21,120	21,120	21,120	
49.0	00	21,120	21,120	42,240	
50.0	00	21,120	21,120	63,360	
51.0	00	21,120	21,120	84,480	
52.0	00	21,120	21,120	105,600	
52.5	50	21,120	10,560	116,160	
60.0	00	21,120	158,400	274,560	
Device	Routing	Invert	Outlet Devices		
#1	Discarded	47.00'	3.000 in/hr Exfi	Itration over	Surface area
			Conductivity to	Groundwater I	Elevation = 0.00'
#2	Primary	48.50'	18.0" Round C	ulvert L= 35	6.0' Ke= 0.500
	2		Inlet / Outlet Inv	ert= 48.50' / 4	1.35' S= 0.0201 '/' Cc= 0.900
			n= 0.014, Flow	Area= 1.77 sf	

Discarded OutFlow Max=1.49 cfs @ 12.61 hrs HW=47.87' (Free Discharge) **1=Exfiltration** (Controls 1.49 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) ←2=Culvert (Controls 0.00 cfs)

Summary for Pond 59.2P:

Inflow Area	ι =	3.747 ac, 8	3.18% Impe	ervious,	Inflow Depth >	0.8	6" foi	r Infil e	event	
Inflow	=	4.31 cfs @	12.08 hrs,	Volume	= 0.270) af				
Outflow	=	0.60 cfs @	12.68 hrs,	Volume	= 0.269) af,	Atten=	86%,	Lag= 3	36.2 min
Discarded	=	0.60 cfs @	12.68 hrs,	Volume	= 0.269) af				
Primary	=	0.00 cfs @	6.00 hrs,	Volume	= 0.000) af				

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 47.81' @ 12.68 hrs Surf.Area= 9,205 sf Storage= 4,271 cf

Plug-Flow detention time= 61.2 min calculated for 0.268 af (99% of inflow) Center-of-Mass det. time= 60.4 min (839.1 - 778.7)

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 17

Prepared by {enter your company name here} HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Volume	Invert	Avail.Storage	Storage Description
#1A	47.00'	8,080 cf	125.00'W x 73.64'L x 3.50'H Field A
			32,218 cf Overall - 12,018 cf Embedded = 20,199 cf x 40.0% Voids
#2A	47.50'	12,018 cf	StormTech SC-740 x 260 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			Row Length Adjustment= +0.44' x 6.45 sf x 26 rows
		20.008 cf	Total Available Storage

20,098 cf I otal Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices
#1	Discarded	47.00'	2.750 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'
#2	Primary	45.30'	24.0" Round Culvert L= 560.0' Ke= 0.500
			Inlet / Outlet Invert= 45.30' / 36.90' S= 0.0150 '/' Cc= 0.900
			n= 0.014, Flow Area= 3.14 sf
#3	Device 2	49.00'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.60 cfs @ 12.68 hrs HW=47.81' (Free Discharge) **1=Exfiltration** (Controls 0.60 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) **2=Culvert** (Passes 0.00 cfs of 12.63 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Pond 60P:

Inflow Area	1 =	9.393 ac, 6	7.76% Imp	ervious,	Inflow Depth >	0.45"	for Infil e	event
Inflow	=	5.36 cfs @	12.09 hrs,	Volume=	= 0.352	af		
Outflow	=	0.82 cfs @	12.84 hrs,	Volume=	= 0.351	af, Atte	en= 85%,	Lag= 45.1 min
Discarded	=	0.82 cfs @	12.84 hrs,	Volume=	- 0.351	af		-
Primary	=	0.00 cfs @	6.00 hrs,	Volume=	= 0.000	af		

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 47.79' @ 12.84 hrs Surf.Area= 11,657 sf Storage= 5,147 cf

Plug-Flow detention time= 58.9 min calculated for 0.350 af (99% of inflow) Center-of-Mass det. time= 58.0 min (861.5 - 803.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	47.00'	10,246 cf	196.25'W x 59.40'L x 3.50'H Field A
			40,800 cf Overall - 15,185 cf Embedded = 25,616 cf x 40.0% Voids
#2A	47.50'	15,185 cf	StormTech SC-740 x 328 Inside #1
			Effective Size= 44.6"W x 30.0"H => 6.45 sf x 7.12'L = 45.9 cf
			Overall Size= 51.0"W x 30.0"H x 7.56'L with 0.44' Overlap
			Row Length Adjustment= +0.44' x 6.45 sf x 41 rows
		25 / 31 cf	Total Available Storage

25,431 cf I otal Available Storage

Storage Group A created with Chamber Wizard

Type III 24-hr Infil Rainfall=2.02" Printed 3/19/2013 Page 18

Prepared by {en	ter your c	ompany name h	ere}
HydroCAD® 10.00	s/n 00983	© 2012 HydroCAD	Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Discarded	47.00'	3.000 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'
#2	Primary	44.75'	30.0" Round Culvert L= 120.0' Ke= 0.500
			Inlet / Outlet Invert= 44.75' / 42.35' S= 0.0200 '/' Cc= 0.900
			n= 0.014, Flow Area= 4.91 sf
#3	Device 2	48.15'	6.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)

Discarded OutFlow Max=0.82 cfs @ 12.84 hrs HW=47.79' (Free Discharge) **1=Exfiltration** (Controls 0.82 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) -2=Culvert (Passes 0.00 cfs of 23.76 cfs potential flow) -3=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Appendix E

Nitrogen Loading Calculation

NITROGEN LONDING CALLULATION LOADING RATE = 9.8 105/YEAR/ ARRE $T\lambda$ FROM TARKE 1: 36.8 ACRES IMPERVIOUS PARKENCY ROADS DIRECTED TO RESIMESE STRAS TOTAL NITACEAN LOADING = 9.8 10/12/AC × 36.9 AC =362 10/YR PER MA DEP. INFILTRATION BASIN WILL REQUER MIRROR THERE FORE ANNUM RECIMMER FROM WATER BUDGET = 67.93 MILLION GALLANS/YEAR CONCENTRATION = 2,66 105/MG OF TN 181 16/YR 67,93 ME/YR 2.66 165 × 0.11983 = 0.32 mg/L MG JOB UNIVERSIM GOMON TE TETRA TECH SHEET NO. DATE 4/18/13 CALCULATED BY NIK One Grant Street CHECKED BY_____ DATE Framingham, MA 01701-9005 SCALE (508) 903-2000

Stormwater Best Management Practices (BMP) Performance Analysis

Revised Document: March 2010 (Original Document: December 2008)

Prepared for:

United States Environmental Protection Agency – Region 1 5 Post Office Square, Suite 100 Boston, MA 02109

Prepared by: Tetra Tech, Inc. 10306 Eaton Place, Suite 340 Fairfax, VA 22030

Annual average pollutant loading export rates of these pollutants were obtained from the *Fundamentals* of *Urban Runoff Management: Technical and Institutional Issues* (Shaver et al. 2007). The pollutant export loading rates for different land uses are shown in Table 3-2. These pollutant loading export rates were selected for this project because they have been reported in several sources of stormwater management literature. Also, use of these TP export rates were applied to the Charles River watershed (310 square miles) and found to closely match (within 1 percent) the measured annual phosphorus load for a 5-year period (1998 to 2002) (MassDEP and US EPA 2007).

	Pollutant loading export rates (lbs/ac-yr)						
Land cover/Source category	TSS	TP	TN	Zn			
Commercial	1,000	1.5	9.8	2.1			
Industrial	670	1.3	4.7	0.4			
High-Density Residential	420	1.0	6.2	0.7			
Medium-Density Residential	250	0.3	3.9	0.1			
Low-Density Residential	65	0.04	0.4	0.04			

Table 3-2. Summary of typical pollutant loading export rates from different land uses

Source: Shaver et al. 2007

3.3. Setup and Calibration of SWMM Water Quality Model

The weather data from the Boston, Massachusetts, station was used to generate runoff volume and pollutant time series in the New England region using the SWMM.

3.3.1. Water Quality Processes in SWMM

In the SWMM, the water quality simulation is divided into two processes: buildup and washoff. The amount of buildup is estimated as a function of the preceding dry-weather days and can be computed using one of three functions: Power, Exponential, and Saturation. The washoff process simulates the pollutant washoff from a given land use and can be computed using one of three functions: Exponential, Rating Curve, and Event Mean Concentration.

The SWMM buildup and washoff routines used to represent these processes provide a more reliable pollutant loading time series as compared to other methods (e.g., event mean concentration). This is because the buildup and washoff routines account for the pollutant mass balance over time. The routines also represent the time between events when pollutants accumulate and the predominance of small rainfall events and the effect of rainfall intensity on washing off pollutant load that has accumulated on impervious surfaces.

In this project, a power function was assumed for the pollutant buildup and an exponential function was assumed for the pollutant washoff. As for the buildup, the pollutant buildup (*B*) accumulates proportionally to time (*t*) raised to some power, until a maximum is reached,

$$B = Min (C_1, C_2 t_3)$$

(1)

where C_1 = maximum buildup possible (mass per unit of area or curb length), C_2 =buildup rate constant (1/days), and C_3 =time exponent.

In the exponential washoff function, the washoff load (*W*) in units of mass per hour is proportional to the product of runoff raised to some power and to the amount of buildup remaining,

$$W = C_1 q^{C_2} B$$

(2)