Calc. By:	NHC	Date:	30-Nov-12
Chk. By:		Date:	

University Station Westwood, MA

Drawdown Calculations

Drawdown Time

$$Time_{drawdown}^{1} = \frac{Rv}{(K)(Bottom Area)}$$

Where: Time_{drawdown} = time it takes the basin to drain completely (hours)

Rv = storage volume (cubic feet)

K = saturated hydraulic conductivity (in/hour)

Bottom Area = bottom area of recharge structure (square feet)

Subsurface Infiltration Basin	Rv (cf)	K² (in/hr)	Bottom Area (sf)	Drawdown Time (hr)
1	97,182	7.5	61,050	2.5
2	53,317	9.25	18,500	3.7
3	34,325	4.13	21,120	4.7

Notes

- 1.) Refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 25 dated February 2008.
- 2.) Refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 22 dated February 2008 (Rawls Rates Table).
- 3.) Refer to HydroCAD® report.

Sediment Forebay Volume

Project: University Station

City: Westwood

State: MA

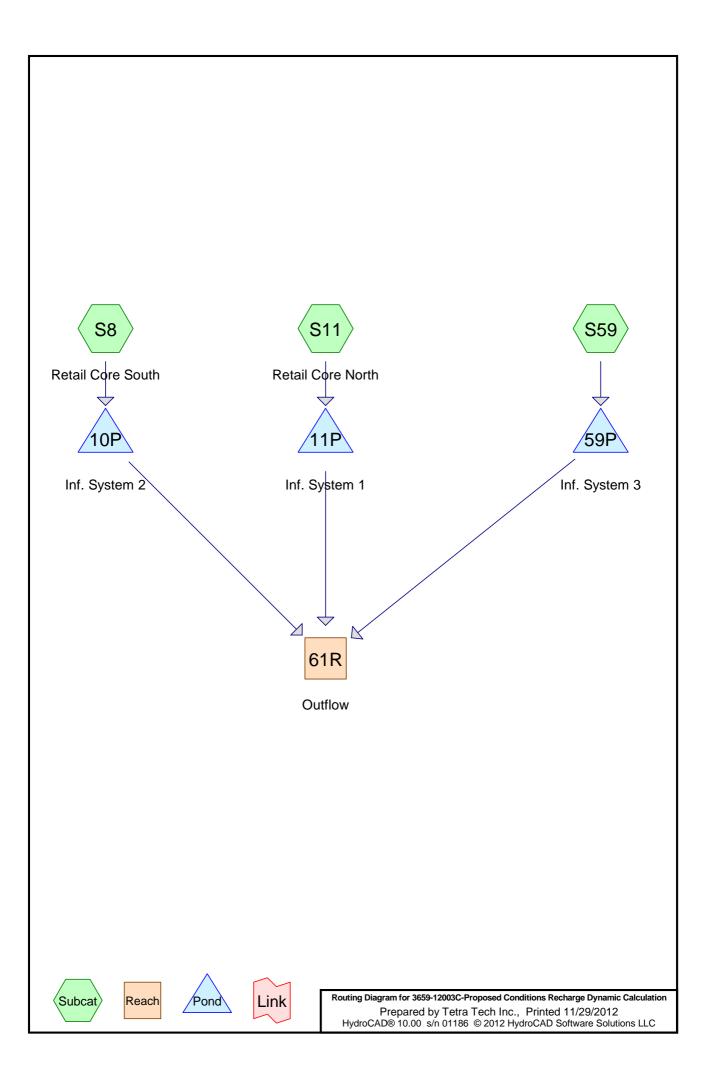
Proj. No: 127-3659-12003

Date: 11/29/2012

Comp: MKM Check: AFT

Sediment Forebay Volume Required

*Based on MADEP requirement


Calculation Summary

Required Sediment Forebay Volume

	Required Runoff	Proposed Impervious	Required Sediment	Sediment Forebay
Forebay	Depth (in)	Area (AC)	Forebay Volume (CF)	Volume Provided (CF)
30F	0.10	18.82	6,830	7,012
52F	0.10	21.64	7,855	7,984
		Total	14,684	14,996

Storage Provided

- (1) Total storage volume provided in Sediment Forebay 30F below overflow weir (elev=52.00) = 7,012 CF
- (2) Total storage volume provided in Sediment Forebay 52F below overflow weir (elev=49.60) = 7,984 CF
- (3) Cumulative storage volumes calculated using HydroCAD[©] watershed modeling program.

3659-12003C-Proposed Conditions Recharge Dynamic CalculationPrepared by Tetra Tech Inc. HydroCAD® 10.00 s/n 01186 © 2012 HydroCAD Software Solutions LLC

Printed 11/29/2012

Page 2

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
8.718	98	(S59)
38.203	98	Impervious (S11, S8)
46.921	98	TOTAL AREA

3659-12003C-Proposed Conditions Recharge Dynamic CalculationPrepared by Tetra Tech Inc.
HydroCAD® 10.00 s/n 01186 © 2012 HydroCAD Software Solutions LLC

Printed 11/29/2012

Page 3

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	_
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
46.921	Other	S11, S59, S8
46.921		TOTAL AREA

3659-12003C-Proposed Conditions Recharge Dynamic CalculationPrepared by Tetra Tech Inc. HydroCAD® 10.00 s/n 01186 © 2012 HydroCAD Software Solutions LLC

Printed 11/29/2012

Page 4

Ground Covers (all nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.000	8.718	8.718		S59
0.000	0.000	0.000	0.000	38.203	38.203	Impervious	S11, S8
0.000	0.000	0.000	0.000	46.921	46.921	TOTAL AREA	

3659-12003C-Proposed Conditions Recharge Dyn Type III 24-hr Recharge Rainfall=1.42" Printed 11/29/2012 Prepared by Tetra Tech Inc.

HydroCAD® 10.00 s/n 01186 © 2012 HydroCAD Software Solutions LLC

Page 5

Time span=6.00-18.00 hrs, dt=0.05 hrs, 241 points Runoff by SCS TR-20 method, UH=SCS Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment S11: Retail Core North Runoff Area=589,497 sf 100.00% Impervious Runoff Depth>1.09"

Tc=5.0 min CN=98 Runoff=17.97 cfs 1.225 af

Runoff Area=379,756 sf 100.00% Impervious Runoff Depth>1.09" Subcatchment S59:

Tc=5.0 min CN=98 Runoff=11.58 cfs 0.789 af

Subcatchment S8: Retail Core Runoff Area=1,074,625 sf 100.00% Impervious Runoff Depth>1.09"

Tc=5.0 min CN=98 Runoff=32.76 cfs 2.234 af

Reach 61R: Outflow Inflow=0.00 cfs 0.000 af

Outflow=0.00 cfs 0.000 af

Pond 10P: Inf. System 2 Peak Elev=47.55' Storage=17,170 cf Inflow=32.76 cfs 2.234 af

Discarded=10.72 cfs 2.231 af Primary=0.00 cfs 0.000 af Outflow=10.72 cfs 2.231 af

Peak Elev=48.37' Storage=13,340 cf Inflow=17.97 cfs 1.225 af Pond 11P: Inf. System 1

Discarded=4.08 cfs 1.224 af Primary=0.00 cfs 0.000 af Outflow=4.08 cfs 1.224 af

Pond 59P: Inf. System 3 Peak Elev=47.83' Storage=10,387 cf Inflow=11.58 cfs 0.789 af

Discarded=2.05 cfs 0.788 af Primary=0.00 cfs 0.000 af Outflow=2.05 cfs 0.788 af

Total Runoff Area = 46.921 ac Runoff Volume = 4.248 af Average Runoff Depth = 1.09" 0.00% Pervious = 0.000 ac 100.00% Impervious = 46.921 ac

3659-12003C-Proposed Conditions Recharge Dyn *Type III 24-hr Recharge Rainfall=1.42*" Prepared by Tetra Tech Inc. Printed 11/29/2012

HydroCAD® 10.00 s/n 01186 © 2012 HydroCAD Software Solutions LLC

Page 6

Summary for Subcatchment S11: Retail Core North

Runoff = 17.97 cfs @ 12.07 hrs, Volume= 1.225 af, Depth> 1.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Recharge Rainfall=1.42"

	Α	rea (sf)	CN [Description		
*	5	89,497	98 I	mpervious		
	589,497 100.00% Impervious Area			00.00% Im	Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Summary for Subcatchment S59:

Runoff = 11.58 cfs @ 12.07 hrs, Volume= 0.789 af, Depth> 1.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Recharge Rainfall=1.42"

	Α	rea (sf)	CN D	Description		
*	3	79,756	98			
	3	379,756	1	00.00% Im	npervious A	Area
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	5.0	()	(" '/	(= = =)	()	Direct Entry,

Summary for Subcatchment S8: Retail Core South

Runoff = 32.76 cfs @ 12.07 hrs, Volume= 2.234 af, Depth> 1.09"

Runoff by SCS TR-20 method, UH=SCS, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Type III 24-hr Recharge Rainfall=1.42"

_	A	rea (sf)	CN D	escription		
*	1,0	74,625	98 lı	mpervious		
1,074,625 100.00% Impervious Area			00.00% Im	Area		
	Tc	Length	Slope	,	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	5.0					Direct Entry,

Summary for Reach 61R: Outflow

Inflow Area = 46.921 ac,100.00% Impervious, Inflow Depth = 0.00" for Recharge event

Inflow = 0.00 cfs @ 6.00 hrs, Volume= 0.000 af

Outflow = 0.00 cfs @ 6.00 hrs, Volume= 0.000 af, Atten= 0%, Lag= 0.0 min

Page 7

Routing by Stor-Ind+Trans method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs

Summary for Pond 10P: Inf. System 2

Inflow Area = 24.670 ac,100.00% Impervious, Inflow Depth > 1.09" for Recharge event

Inflow = 32.76 cfs @ 12.07 hrs, Volume= 2.234 af

Outflow = 10.72 cfs @ 12.36 hrs, Volume= 2.231 af, Atten= 67%, Lag= 17.0 min

Discarded = 10.72 cfs @ 12.36 hrs, Volume= 2.231 af Primary = 0.00 cfs @ 6.00 hrs, Volume= 0.000 af

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 47.55' @ 12.36 hrs Surf.Area= 61,050 sf Storage= 17,170 cf

Plug-Flow detention time= 9.6 min calculated for 2.231 af (100% of inflow) Center-of-Mass det. time= 9.1 min (747.1 - 738.0)

Volume	Invert	Avail.Storage	Storage Description
#1	47.00'	72,188 cf	Custom Stage Data (Prismatic) Listed below Inside #2
#2	47.00'	123,750 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			381,563 cf Overall - 72,188 cf Embedded = 309,375 cf x 40.0% Voids

195,938 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.00	11,550	0	0
48.00	11,550	11,550	11,550
49.00	11,550	11,550	23,100
50.00	11,550	11,550	34,650
51.00	11,550	11,550	46,200
52.00	11,550	11,550	57,750
53.00	11,550	11,550	69,300
53.25	11,550	2,888	72,188

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.00	61,050	0	0
48.00	61,050	61,050	61,050
49.00	61,050	61,050	122,100
50.00	61,050	61,050	183,150
51.00	61,050	61,050	244,200
52.00	61,050	61,050	305,250
53.00	61,050	61,050	366,300
53.25	61,050	15,263	381,563

Device	Routing	Invert	Outlet Devices
#1	Discarded	47.00'	7.500 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'
#2	Primary	49.50'	36.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=10.72 cfs @ 12.36 hrs HW=47.55' (Free Discharge) **1=Exfiltration** (Controls 10.72 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

Page 8

Summary for Pond 11P: Inf. System 1

Inflow Area = 13.533 ac,100.00% Impervious, Inflow Depth > 1.09" for Recharge event 17.97 cfs @ 12.07 hrs, Volume= Inflow = 1.225 af 4.08 cfs @ 12.47 hrs, Volume= 1.224 af, Atten= 77%, Lag= 23.6 min Outflow = Discarded = 4.08 cfs @ 12.47 hrs, Volume= 1.224 af 0.00 cfs @ 6.00 hrs, Volume= 0.000 af Primary =

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 48.37' @ 12.47 hrs Surf.Area= 18,500 sf Storage= 13,340 cf

Plug-Flow detention time= 19.8 min calculated for 1.224 af (100% of inflow) Center-of-Mass det. time= 19.3 min (757.3 - 738.0)

Volume	Invert	Avail.Storage	Storage Description
#1	47.00'	28,875 cf	Custom Stage Data (Prismatic) Listed below Inside #2
#2	47.00'	43,950 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			138,750 cf Overall - 28,875 cf Embedded = 109,875 cf x 40.0% Voids

Cum.Store

72,825 cf Total Available Storage

Inc.Store

(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.00	3,850	0	0
48.00	3,850	3,850	3,850
49.00	3,850	3,850	7,700
50.00	3,850	3,850	11,550
51.00	3,850	3,850	15,400
52.00	3,850	3,850	19,250
53.00	3,850	3,850	23,100
54.00	3,850	3,850	26,950
54.50	3,850	1,925	28,875
Elevation	Surf.Area	Inc.Store	Cum.Store
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)
(feet)	(sq-ft)	(cubic-feet)	
(feet) 47.00	(sq-ft) 18,500	(cubic-feet) 0	(cubic-feet) 0
(feet) 47.00 48.00	(sq-ft) 18,500 18,500	(cubic-feet) 0 18,500	(cubic-feet) 0 18,500
(feet) 47.00 48.00 49.00	(sq-ft) 18,500 18,500 18,500	(cubic-feet) 0 18,500 18,500	(cubic-feet) 0 18,500 37,000
(feet) 47.00 48.00 49.00 50.00	(sq-ft) 18,500 18,500 18,500 18,500	(cubic-feet) 0 18,500 18,500 18,500	(cubic-feet) 0 18,500 37,000 55,500
(feet) 47.00 48.00 49.00 50.00 51.00	(sq-ft) 18,500 18,500 18,500 18,500 18,500	(cubic-feet) 0 18,500 18,500 18,500 18,500	(cubic-feet) 0 18,500 37,000 55,500 74,000
(feet) 47.00 48.00 49.00 50.00 51.00 52.00	(sq-ft) 18,500 18,500 18,500 18,500 18,500	(cubic-feet) 0 18,500 18,500 18,500 18,500 18,500	(cubic-feet) 0 18,500 37,000 55,500 74,000 92,500

Surf.Area

Elevation

Device	Routing	Invert	Outlet Devices
#1	Discarded	47.00'	9.250 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'
#2	Primary	49.50'	36.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=4.08 cfs @ 12.47 hrs HW=48.37' (Free Discharge) **1=Exfiltration** (Controls 4.08 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

Printed 11/29/2012

HydroCAD® 10.00 s/n 01186 © 2012 HydroCAD Software Solutions LLC

Page 9

Summary for Pond 59P: Inf. System 3

Inflow Area = 8.718 ac,100.00% Impervious, Inflow Depth > 1.09" for Recharge event 11.58 cfs @ 12.07 hrs, Volume= Inflow = 0.789 af 2.05 cfs @ 12.52 hrs, Volume= 0.788 af, Atten= 82%, Lag= 27.0 min Outflow = 2.05 cfs @ 12.52 hrs, Volume= Discarded = 0.788 af 0.00 cfs @ 6.00 hrs, Volume= 0.000 af Primary =

Routing by Stor-Ind method, Time Span= 6.00-18.00 hrs, dt= 0.05 hrs Peak Elev= 47.83' @ 12.52 hrs Surf.Area= 21,120 sf Storage= 10,387 cf

Plug-Flow detention time= 34.0 min calculated for 0.788 af (100% of inflow) Center-of-Mass det. time= 33.1 min (771.1 - 738.0)

Volume	Invert	Avail.Storage	Storage Description
#1	47.00'	36,960 cf	Custom Stage Data (Prismatic) Listed below x 2 Inside #2
#2	47.00'	31,680 cf	Custom Stage Data (Prismatic) Listed below (Recalc)
			116,160 cf Overall - 36,960 cf Embedded = 79,200 cf x 40.0% Voids

68,640 cf Total Available Storage

Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
(1001)	(04 11)	(Cable 100t)	(00010 1001)
47.00	3,360	0	0
48.00	3,360	3,360	3,360
49.00	3,360	3,360	6,720
50.00	3,360	3,360	10,080
51.00	3,360	3,360	13,440
52.00	3,360	3,360	16,800
52.50	3,360	1,680	18,480
	-,	,	-,
Elevation	Surf.Area	Inc.Store	Cum.Store
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
17.00	04.400		

Lievation	Suii.Aica	1110.31016	Culli.Sible
(feet)	(sq-ft)	(cubic-feet)	(cubic-feet)
47.00	21,120	0	0
48.00	21,120	21,120	21,120
49.00	21,120	21,120	42,240
50.00	21,120	21,120	63,360
51.00	21,120	21,120	84,480
52.00	21,120	21,120	105,600
52.50	21,120	10,560	116,160

Device	Routing	Invert	Outlet Devices
#1	Discarded	47.00'	4.130 in/hr Exfiltration over Surface area
			Conductivity to Groundwater Elevation = 0.00'
#2	Primary	48.50'	24.0" Vert. Orifice/Grate C= 0.600

Discarded OutFlow Max=2.05 cfs @ 12.52 hrs HW=47.83' (Free Discharge) **1=Exfiltration** (Controls 2.05 cfs)

Primary OutFlow Max=0.00 cfs @ 6.00 hrs HW=47.00' (Free Discharge) 2=Orifice/Grate (Controls 0.00 cfs)

Calc. By:	NHC	Date: 30-Nov-12	
Chk. By:		Date:	

University Station Westwood, MA

Groundwater Recharge Calculations

Required Recharge Volume¹

Rv = F x impervious area

Where: Rv = required recharge volume (acre-feet)

F = target depth factor associated with each hydrologic soil group (inches) Impervious Area = pavement, gravel and rooftop area on site (acres)

NRCS Hydrologic Soil Type	Approx. Soil Texture	Target Depth Factor (inches)	Impervious Area (acre)	Rv (acre-feet)	Rv (cf)
Α	sand	0.60	84.30	4.215	183,605
В	loam	0.35	0.00	0.000	0
С	silty loam	0.25	0.00	0.000	0
D	clay	0.10	0.00	0.000	0
	_	<u>. </u>	Total =	4.215	183,605

Provided Recharge Volume²

Subsurface Infiltration Basin	Dynamic Recharge Volume (acre-feet)	Dynamic Recharge Volume (cf)
1	2.231	97,182
2	1.224	53,317
3	0.788	34,325
Total =	4.243	184,825

Notes:

- 1.) Refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 15 dated February 2008.
- 2.) Provided recharge volume is based on the Simple Dynamic Method, refer to Massachusetts Stormwater Handbook Volume 3, Chapter 1, page 19 dated February 2008.

3659-12003C-Proposed Conditions Forebary Sizing-01

Prepared by {enter your company name here}
HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 30F:

		_			
Elevation	Surface	Storage	Elevation	Surface	Storage
(feet)	(sq-ft)	(cubic-feet)	(feet)	(sq-ft)	(cubic-feet)
49.00	1,520	0	51.65	3,021	5,915
49.05	1,545	77	51.70	3,053	6,067
49.10	1,571	155	51.75	3,085	6,221
49.15	1,596	234	51.80	3,117	6,376
49.20	1,621	314	51.85	3,149	6,532
49.25	1,647	396	51.90	3,182	6,691
49.30	1,672	479	51.95	3,214	6,851
49.35	1,697	563	52.00	3,246	7,012
49.40	1,723	649	52.05	3,282	7,175
49.45	1,748	735	52.10	3,317	7,340
49.50	1,774	823	52.15	3,353	7,507
49.55	1,799	913	52.20	3,388	7,675
49.60	1,824	1,003	52.25	3,424	7,846
49.65	1,850	1,095	52.30	3,460	8,018
49.70	1,875	1,188	52.35	3,495	8,192
49.75	1,900	1,283	52.40	3,531	8,367
49.80 40.85	1,926	1,378	52.45	3,566	8,545 8,724
49.85 49.90	1,951 1,976	1,475 1,573	52.50 52.55	3,602 3,638	8,724 8,905
49.95	2,002	1,673	52.60	3,673	9,088
50.00	2,002	1,774	52.65	3,709	9,088
50.05	2,027	1,876	52.70	3,709 3,744	9,459
50.10	2,085	1,979	52.75	3,780	9,647
50.15	2,113	2,084	52.80	3,816	9,837
50.20	2,142	2,190	52.85	3,851	10,028
50.25	2,171	2,298	52.90	3,887	10,222
50.30	2,199	2,407	52.95	3,922	10,417
50.35	2,228	2,518	53.00	3,958	10,614
50.40	2,257	2,630		-,	-,-
50.45	2,286	2,744			
50.50	2,315	2,859			
50.55	2,343	2,975			
50.60	2,372	3,093			
50.65	2,401	3,213			
50.70	2,430	3,333			
50.75	2,458	3,455			
50.80	2,487	3,579			
50.85	2,516	3,704			
50.90	2,544	3,831			
50.95	2,573	3,959			
51.00 51.05	2,602	4,088			
51.05 51.10	2,634	4,219 4,251			
51.10 51.15	2,666 2,699	4,351 4,486			
51.13	2,731	4,621			
51.25	2,763	4,759			
51.30	2,705 2,795	4,898			
51.35	2,827	5,038			
51.40	2,860	5,180			
51.45	2,892	5,324			
51.50	2,924	5,470			
51.55	2,956	5,617			
51.60	2,988	5,765			

3659-12003C-Proposed Conditions Forebary Sizing-01

Prepared by {enter your company name here}
HydroCAD® 10.00 s/n 00983 © 2012 HydroCAD Software Solutions LLC

Stage-Area-Storage for Pond 52F:

Surface

(sq-ft)

4,145

4,188

4,230

4,273

4,316

4,358

4,401 **4,444** Storage (cubic-feet)

8,190

8,399

8,609

8,822

9,037 9,253 9,472

9,694

Elevation

(feet)

49.65

49.70

49.75

49.80

49.85

49.90 49.95

50.00

		J
Elevation (feet)	Surface (sq-ft)	Storage (cubic-feet)
47.00	2,135	0
47.05	2,169	108
47.10	2,203	217
47.15	2,237	328
47.20	2,271	441
47.25	2,305	555
47.30	2,339	671
47.35	2,373	789
47.40	2,407	908
47.45	2,441	1,030
47.50	2,475	1,153
47.55	2,509	1,277
47.60	2,543	1,403
47.65	2,577	1,531
47.70	2,611	1,661
47.75	2,645	1,793
47.80	2,679	1,926
47.85	2,713	2,060
47.90	2,747	2,197
47.95	2,781	2,335
48.00	2,815	2,475
48.05	2,854	2,617
48.10	2,892	2,760
48.15	2,931	2,906
48.20	2,970	3,053
48.25	3,009	3,203
48.30	3,047	3,354
48.35	3,086	3,508
48.40	3,125	3,663
48.45	3,163	3,820
48.50	3,202	3,979
48.55	3,241	4,140
48.60	3,279	4,303
48.65	3,318	4,468
48.70	3,357	4,635
48.75	3,396	4,804
48.80	3,434	4,975
48.85	3,473	5,147
48.90	3,512	5,322
48.95	3,550	5,499
49.00	3,589	5,677
49.05	3,632	5,858
49.10	3,675	6,040
49.15	3,717	6,225
49.20	3,760	6,412
49.25	3,803	6,601
49.30	3,845	6,792
49.35	3,888	6,986
49.40	3,931	7,181
49.45	3,974	7,379
49.50	4,017	7,578
49.55	4,059	7,780
49.60	4,102	7,984
		ı

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 1

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	15.87
Imperviousness (%)	82

The Stormceptor System model STC 11000 achieves the water quality objective removing 75% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 15.7 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	75
WQ Flow Rate (cfs)	15.7

Upstream Storage

Storage (ac-ft)	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal		
	%		
STC 450i	25		
STC 900	33		
STC 1200	50		
STC 1800	54		
STC 2400	59		
STC 3600	61		
STC 4800	66		
STC 6000	66		
STC 7200	70		
STC 11000	75		
STC 13000	75		
STC 16000	79		

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

	Fine (organics, silts and sand)							
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000			
Single inlet pipe	3 in.	1 in.	3 in.			
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.			

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	STC 2
Location	N/A

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	0.48
Imperviousness (%)	96

The Stormceptor System model STC 450i achieves the water quality objective removing 85% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 0.56 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	75
WQ Flow Rate (cfs)	0.56

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal
·	%
STC 450i	85
STC 900	90
STC 1200	90
STC 1800	91
STC 2400	93
STC 3600	93
STC 4800	95
STC 6000	95
STC 7200	96
STC 11000	97
STC 13000	97
STC 16000	98

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand)		
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000		
Single inlet pipe	3 in.	1 in.	3 in.		
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.		

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 3

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	4.27
Imperviousness (%)	95.1

The Stormceptor System model STC 3600 achieves the water quality objective removing 75% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 4.91 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	75
WQ Flow Rate (cfs)	4.91

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal
	%
STC 450i	58
STC 900	69
STC 1200	69
STC 1800	69
STC 2400	74
STC 3600	75
STC 4800	79
STC 6000	79
STC 7200	82
STC 11000	86
STC 13000	86
STC 16000	89

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

			Fine (organic	S, :	silts and sand))		
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000			
Single inlet pipe	3 in.	1 in.	3 in.			
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.			

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 4

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	1.07
Imperviousness (%)	95.3

The Stormceptor System model STC 450i achieves the water quality objective removing 75% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 1.23 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	75
WQ Flow Rate (cfs)	1.23

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal
STC 450i	75
STC 900	83
STC 1200	83
STC 1800	84
STC 2400	87
STC 3600	88
STC 4800	90
STC 6000	91
STC 7200	92
STC 11000	94
STC 13000	94
STC 16000	95

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

			Fine (organic	S, :	silts and sand))		
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

mot and a district ips mi						
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000			
Single inlet pipe	3 in.	1 in.	3 in.			
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.			

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 5

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	1.68
Imperviousness (%)	95.2

The Stormceptor System model STC 900 achieves the water quality objective removing 79% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 1.94 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	75
WQ Flow Rate (cfs)	1.94

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal			
·	%			
STC 450i	70			
STC 900	79			
STC 1200	79			
STC 1800	79			
STC 2400	83			
STC 3600	84			
STC 4800	87			
STC 6000	87			
STC 7200	90			
STC 11000	92			
STC 13000	92			
STC 16000	94			

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

			Fine (organic	S, :	silts and sand))		
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

mot and a district ips mi							
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000				
Single inlet pipe	3 in.	1 in.	3 in.				
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.				

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

•	
Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 6

Designer Information

Company	N/A
Contact	N/A

Notes

N/A			

Drainage Area

Total Area (ac)	4.58
Imperviousness (%)	74.7

The Stormceptor System model STC 450i achieves the water quality objective removing 61% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 4.14 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	50
WQ Flow Rate (cfs)	4.14

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal			
STC 450i	61			
STC 900	71			
STC 1200	71			
STC 1800	71			
STC 2400	76			
STC 3600	76			
STC 4800	80			
STC 6000	81			
STC 7200	84			
STC 11000	87			
STC 13000	88			
STC 16000	90			

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

			Fine (organic	S, :	silts and sand))		
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

mot and a district ips mi							
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000				
Single inlet pipe	3 in.	1 in.	3 in.				
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.				

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

•	
Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 7

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	37.46
Imperviousness (%)	36.9

The Stormceptor System model STC 1800 achieves the water quality objective removing 53% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 16.73 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	50
WQ Flow Rate (cfs)	16.73

Upstream Storage

Storage (ac-ft)	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal
	%
STC 450i	23
STC 900	31
STC 1200	48
STC 1800	53
STC 2400	57
STC 3600	59
STC 4800	65
STC 6000	65
STC 7200	69
STC 11000	74
STC 13000	74
STC 16000	78

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

	Fine (organics, silts and sand)							
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

mot and a district ips mi							
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000				
Single inlet pipe	3 in.	1 in.	3 in.				
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.				

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 8

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	2.89
Imperviousness (%)	93.1

The Stormceptor System model STC 450i achieves the water quality objective removing 64% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 3.25 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	50
WQ Flow Rate (cfs)	3.25

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal		
STC 450i	64		
STC 900	74		
STC 1200	74		
STC 1800	74		
STC 2400	78		
STC 3600	79		
STC 4800	83		
STC 6000	83		
STC 7200	86		
STC 11000	89		
STC 13000	89		
STC 16000	91		

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

Fine (organics, silts and sand))			
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

mot and a district ips mi			
Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000
Single inlet pipe	3 in.	1 in.	3 in.
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

PCSWMM for Stormceptor

Project Information

Date	11/19/2012
Project Name	University Station
Project Number	N/A
Location	STC 9

Designer Information

Company	N/A
Contact	N/A

Notes

N/A				

Drainage Area

Total Area (ac)	5.01
Imperviousness (%)	77.8

The Stormceptor System model STC 450i achieves the water quality objective removing 59% TSS for a Fine (organics, silts and sand) particle size distribution; providing continuous positive treatment for a stormwater quality flow rate of 4.72 cfs.

Rainfall

Name	BLUE HILL
State	MA
ID	736
Years of Records	1948 to 2005
Latitude	42°12'44"N
Longitude	71°6'53"W

Water Quality Objective

TSS Removal (%)	50
WQ Flow Rate (cfs)	4.72

Upstream Storage

Storage	Discharge
(ac-ft)	(cfs)
0	0

Stormceptor Model	TSS Removal
STC 450i	59
STC 900	69
STC 1200	69
STC 1800	69
STC 2400	74
STC 3600	75
STC 4800	79
STC 6000	80
STC 7200	83
STC 11000	86
STC 13000	87
STC 16000	89

Removing silt particles from runoff ensures that the majority of the pollutants, such as hydrocarbons and heavy metals that adhere to fine particles, are not discharged into our natural water courses. The table below lists the particle size distribution used to define the annual TSS removal.

	Fine (organics, silts and sand)							
Particle Size	Distribution	Specific Gravity	Settling Velocity		Particle Size	Distribution	Specific Gravity	Settling Velocity
μm	%	,	ft/s		μm	%	-	ft/s
20	20	1.3	0.0013					
60	20	1.8	0.0051					
150	20	2.2	0.0354					
400	20	2.65	0.2123					
2000	20	2.65	0.9417					

Stormceptor Design Notes

- Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor.
- Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal.
- Only the STC 450i is adaptable to function with a catch basin inlet and/or inline pipes.
- Only the Stormceptor models STC 450i to STC 7200 may accommodate multiple inlet pipes.
- Inlet and outlet invert elevation differences are as follows:

Inlet Pipe Configuration	STC 450i	STC 900 to STC 7200	STC 11000 to STC 16000					
Single inlet pipe	3 in.	1 in.	3 in.					
Multiple inlet pipes	3 in.	3 in.	Only one inlet pipe.					

- Design estimates are based on stable site conditions only, after construction is completed.
- Design estimates assume that the storm drain is not submerged during zero flows. For submerged applications, please contact your local Stormceptor representative.
- Design estimates may be modified for specific spills controls. Please contact your local Stormceptor representative for further assistance.
- For pricing inquiries or assistance, please contact Rinker Materials 1 (800) 909-7763 www.rinkerstormceptor.com

University Station Stormceptor Sizing Summary November 30, 2012

STC #	Upstream	Overal Tributary	Tributary	% Impervious	TSS Removal	Water Quality	Time of	Impervious		Water Quality	STC
316#	DMH	Area (ac)	Impervious Area (ac)	% impervious	Target	Design Depth	Concentration	Area (sq mi)	qu	Flow Rate (cfs)	Model #
1	DMH 31	15.87	13.01	82.0%	75.0%	1"	0.1	0.020328125	774	15.73	11000
2	DMH 102	0.48	0.46	95.8%	75.0%	1"	0.1	0.00071875	774	0.56	900
3	DMH 201	4.27	4.06	95.1%	75.0%	1"	0.1	0.00634375	774	4.91	3600
4	DMH 302	1.07	1.02	95.3%	75.0%	1"	0.1	0.00159375	774	1.23	900
5	DMH 401	1.68	1.60	95.2%	75.0%	1"	0.1	0.0025	774	1.94	900
6	DMH 507	4.58	3.42	74.7%	50.0%	1"	0.1	0.00534375	774	4.14	900
7	DMH 619	37.46	13.83	36.9%	50.0%	1"	0.1	0.021609375	774	16.73	1800
8	DMH 622	2.89	2.69	93.1%	50.0%	1"	0.1	0.004203125	774	3.25	900
9	DMH 707	5.01	3.90	77.8%	50.0%	1"	0.1	0.00609375	774	4.72	900

Project: Univsersity Station By: NHC Date: 10/9/2012

Location: Westwood, MA Chkd: AFT Date: 10/9/2012

Watershed Area: Point of Analysis 1

	A BMP	B TSS Removal Rate	C Starting TSS Load*	D Amount Removed (BxC)	E Remaining Load (C-D)
	Street Sweeping	0.05	1.00	0.050	0.95
	Deep Sump/Hooded Catchbasins	0.25	0.95	0.238	0.71
TSS Removal Calculation Worksheet	Water Quality Structures	0.50	0.71	0.356	0.36
	Extended Dry Detention Basin with Sediment Forebay	0.50	0.36	0.178	0.18
	* Equals remaining lo	oad from previous BMP	Total TSS Removal =	82.2%	

Source: Volume Two: Massachusetts Stormwater Handbook, Dated January 2009 prepared by MADEP, Section VI Case studies.

Project: Univsersity Station By: NHC Date: 11/30/2012

Location: Westwood, MA Chkd: AFT Date: 11/30/2012

Watershed Area: Point of Analysis 2

	ВМР	B TSS Removal Rate	C Starting TSS Load*	D Amount Removed (BxC)	E Remaining Load (C-D)
	Street Sweeping	0.05	1.00	0.050	0.95
	Deep Sump/Hooded Catchbasins	0.25	0.95	0.238	0.71
TSS Removal Calculation Worksheet	Water Quality Structures	0.75	0.71	0.534	0.18
	Subsurface Infiltration Basin	0.80	0.18	0.143	0.04
	* Equals remaining lo	ad from previous BMP	Total TSS Removal =	96.4%	

Project: Univsersity Station By: NHC Date: 10/9/2012

Location: Westwood, MA Chkd: AFT Date: 10/9/2012

Watershed Area: Point of Analysis 3

	A BMP	B TSS Removal Rate	C Starting TSS Load*	D Amount Removed (BxC)	E Remaining Load (C-D)
	Street Sweeping	0.05	1.00	0.050	0.95
	Deep Sump/Hooded Catchbasins	0.25	0.95	0.238	0.71
TSS Removal Calculation Worksheet	Water Quality Structures	0.50	0.71	0.356	0.36
	Extended Dry Detention Basin with Sediment Forebay	0.50	0.36	0.178	0.18
	* Equals remaining lo	ead from previous BMP	Total TSS Removal =	82.2%	

Project: Univsersity Station By: NHC Date: 10/9/2012

Location: Westwood, MA Chkd: AFT Date: 10/9/2012

Watershed Area: Point of Analysis 4

	ВМР	B TSS Removal Rate	C Starting TSS Load*	D Amount Removed (BxC)	E Remaining Load (C-D)
	Street Sweeping	0.05	1.00	0.050	0.95
	Deep Sump/Hooded Catchbasins	0.25	0.95	0.238	0.71
TSS Removal Calculation Worksheet	Water Quality Structures	0.50	0.71	0.356	0.36
	Subsurface Infiltration Basin	0.80	0.36	0.285	0.07
	* Equals remaining lo	ad from previous BMP	Total TSS Removal =	92.9%	

Source: Volume Two: Massachusetts Stormwater Handbook, Dated January 2009 prepared by MADEP, Section VI Case studies.